Skip to main content

Advertisement

Log in

Influence of genetic variation in the vitamin D pathway on plasma 25-hydroxyvitamin D3 levels and survival among patients with metastatic colorectal cancer

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

The relationships of genetic variation in the vitamin D pathway with circulating 25-hydroxyvitamin D3 [25(OH)D] levels and survival remain largely unknown for patients with metastatic colorectal cancer (mCRC).

Methods

Among 535 patients participating in a randomized trial of chemotherapy for mCRC, we prospectively measured baseline plasma 25(OH)D and examined 124 tagging single-nucleotide polymorphisms (SNPs) within seven genes in the vitamin D pathway, including five SNPs associated with circulating 25(OH)D levels in previous genome-wide association studies (GWAS). We evaluated whether these SNPs were associated with plasma 25(OH)D levels and patient outcome (overall survival, time to progression, and tumor response), using linear, logistic, and Cox proportional hazards regression.

Results

We observed a significant association between 25(OH)D levels and an additive genetic risk score determined by the five GWAS-identified SNPs (p = 0.0009). We did not observe any direct association between 25(OH)D-associated SNPs, individually or as a genetic risk score, and patient outcome. However, we found a significant interaction between 25(OH)D levels and rs12785878 genotype in DHCR7 on overall survival (pinteraction = 0.02).

Conclusion

Germline genetic variation in the vitamin D pathway informs baseline 25(OH)D levels among patients with mCRC. The association between 25(OH)D levels and overall survival may vary by DHCR7 genotype.

ClinicalTrials.gov Identifier: NCT00003594 (https://clinicaltrials.gov/ct2/show/NCT00003594).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Meggouh F, Lointier P, Saez S (1991) Sex steroid and 1,25-dihydroxyvitamin D3 receptors in human colorectal adenocarcinoma and normal mucosa. Can Res 51:1227–1233

    CAS  Google Scholar 

  2. Vandewalle B, Adenis A, Hornez L, Revillion F, Lefebvre J (1994) 1,25-dihydroxyvitamin D3 receptors in normal and malignant human colorectal tissues. Cancer Lett 86:67–73

    Article  CAS  PubMed  Google Scholar 

  3. Zehnder D, Bland R, Williams MC et al (2001) Extrarenal expression of 25-hydroxyvitamin d(3)-1 alpha-hydroxylase. J Clin Endocrinol Metab 86:888–894

    CAS  PubMed  Google Scholar 

  4. Vandewalle B, Wattez N, Lefebvre J (1995) Effects of vitamin D3 derivatives on growth, differentiation and apoptosis in tumoral colonic HT 29 cells: possible implication of intracellular calcium. Cancer Lett 97:99–106

    Article  CAS  PubMed  Google Scholar 

  5. Diaz GD, Paraskeva C, Thomas MG, Binderup L, Hague A (2000) Apoptosis is induced by the active metabolite of vitamin D3 and its analogue EB1089 in colorectal adenoma and carcinoma cells: possible implications for prevention and therapy. Cancer Res 60:2304–2312

    CAS  PubMed  Google Scholar 

  6. Palmer HG, Gonzalez-Sancho JM, Espada J et al (2001) Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. J Cell Biol 154:369–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Scaglione-Sewell BA, Bissonnette M, Skarosi S, Abraham C, Brasitus TA (2000) A vitamin D3 analog induces a G1-phase arrest in CaCo-2 cells by inhibiting cdk2 and cdk6: roles of cyclin E, p21Waf1, and p27Kip1. Endocrinology 141:3931–3939

    Article  CAS  PubMed  Google Scholar 

  8. Iseki K, Tatsuta M, Uehara H et al (1999) Inhibition of angiogenesis as a mechanism for inhibition by 1alpha-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 of colon carcinogenesis induced by azoxymethane in Wistar rats. International journal of cancer. J Int Cancer 81:730–733

    Article  CAS  Google Scholar 

  9. Fernandez-Garcia NI, Palmer HG, Garcia M et al (2005) 1alpha,25-Dihydroxyvitamin D3 regulates the expression of Id1 and Id2 genes and the angiogenic phenotype of human colon carcinoma cells. Oncogene 24:6533–6544

    Article  CAS  PubMed  Google Scholar 

  10. Evans SR, Shchepotin EI, Young H, Rochon J, Uskokovic M, Shchepotin IB (2000) 1,25-dihydroxyvitamin D3 synthetic analogs inhibit spontaneous metastases in a 1,2-dimethylhydrazine-induced colon carcinogenesis model. Int J Oncol 16:1249–1254

    CAS  PubMed  Google Scholar 

  11. Wjst M, Altmuller J, Braig C, Bahnweg M, Andre E (2007) A genome-wide linkage scan for 25-OH-D(3) and 1,25-(OH)2-D3 serum levels in asthma families. J Steroid Biochem Mol Biol 103:799–802

    Article  CAS  PubMed  Google Scholar 

  12. Orton SM, Morris AP, Herrera BM et al (2008) Evidence for genetic regulation of vitamin D status in twins with multiple sclerosis. Am J Clin Nutr 88:441–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shea MK, Benjamin EJ, Dupuis J et al (2009) Genetic and non-genetic correlates of vitamins K and D. Eur J Clin Nutr 63:458–464

    Article  CAS  PubMed  Google Scholar 

  14. Hunter D, De Lange M, Snieder H et al (2001) Genetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone regulation. J Bone Miner Res 16:371–378

    Article  CAS  PubMed  Google Scholar 

  15. Ahn J, Yu K, Stolzenberg-Solomon R et al (2010) Genome-wide association study of circulating vitamin D levels. Hum Mol Genet 19:2739–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang TJ, Zhang F, Richards JB et al (2010) Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 376:180–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ng K, Sargent DJ, Goldberg RM et al (2011) Vitamin D status in patients with stage IV colorectal cancer: findings from Intergroup trial N9741. J Clin Oncol 29:1599–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goldberg RM, Sargent DJ, Morton RF et al (2004) A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol 22:23–30

    Article  CAS  PubMed  Google Scholar 

  19. Meyerhardt JA, Sloan JA, Sargent DJ et al (2005) Associations between plasma insulin-like growth factor proteins and C-peptide and quality of life in patients with metastatic colorectal cancer. Cancer Epidemiol Biomark Prev 14:1402–1410

    Article  CAS  Google Scholar 

  20. McLeod HL, Sargent DJ, Marsh S et al (2010) Pharmacogenetic predictors of adverse events and response to chemotherapy in metastatic colorectal cancer: results from North American Gastrointestinal Intergroup Trial N9741. J Clin Oncol 28:3227–3233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hutz JE, Manning WA, Province MA, McLeod HL (2011) Genomewide analysis of inherited variation associated with phosphorylation of PI3 K/AKT/mTOR signaling proteins. PLoS ONE 6:e24873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hollis BW (1997) Quantitation of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D by radioimmunoassay using radioiodinated tracers. Methods Enzymol 282:174–186

    Article  CAS  PubMed  Google Scholar 

  23. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57(1):289–300

    Google Scholar 

  24. Cox DR (1992) Regression models and life-tables. In: Kotz S, Johnson NL (eds) Breakthroughs in statistics. Springer, New York, pp 527–541

    Chapter  Google Scholar 

  25. Gorham ED, Garland CF, Garland FC et al (2007) Optimal vitamin D status for colorectal cancer prevention: a quantitative meta analysis. Am J Prev Med 32:210–216

    Article  PubMed  Google Scholar 

  26. Ng K, Meyerhardt JA, Wu K et al (2008) Circulating 25-hydroxyvitamin d levels and survival in patients with colorectal cancer. J Clin Oncol 26:2984–2991

    Article  CAS  PubMed  Google Scholar 

  27. Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW (2004) Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci USA 101:7711–7715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pibiri F, Kittles RA, Sandler RS et al (2014) Genetic variation in vitamin D-related genes and risk of colorectal cancer in African Americans. Cancer Causes Control 25:561–570

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ng K, Venook AP, Sato K et al (2015) Vitamin D status and survival of metastatic colorectal cancer patients: results from CALGB/SWOG 80405 (Alliance). Am Soc Clin Oncol. https://doi.org/10.1200/jco.2015.33.15_suppl.3503

    Article  Google Scholar 

  30. Shabahang M, Buras RR, Davoodi F, Schumaker LM, Nauta RJ, Evans SR (1993) 1,25-Dihydroxyvitamin D3 receptor as a marker of human colon carcinoma cell line differentiation and growth inhibition. Cancer Res 53:3712–3718

    CAS  PubMed  Google Scholar 

  31. Hiraki LT, Major JM, Chen C et al (2013) Exploring the genetic architecture of circulating 25-hydroxyvitamin D. Genet Epidemiol 37:92–98

    Article  PubMed  Google Scholar 

  32. Morales-Oyarvide V, Meyerhardt JA, Ng K (2016) Vitamin D and physical activity in patients with colorectal cancer: epidemiological evidence and therapeutic implications. Cancer J 22:223–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mondul AM, Weinstein SJ, Layne TM, Albanes D (2017) Vitamin D and cancer risk and mortality: state of the science, gaps, and challenges. Epidemiol Rev 39:28–48

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zgaga L, Theodoratou E, Farrington SM et al (2014) Plasma vitamin D concentration influences survival outcome after a diagnosis of colorectal cancer. J Clin Oncol 32:2430–2439

    Article  CAS  PubMed  Google Scholar 

  35. Prabhu AV, Luu W, Sharpe LJ, Brown AJ (2016) Cholesterol-mediated degradation of 7-dehydrocholesterol reductase switches the balance from cholesterol to vitamin D synthesis. J Biol Chem 291:8363–8373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Strawbridge RJ, Deleskog A, McLeod O et al (2014) A serum 25-hydroxyvitamin D concentration-associated genetic variant in DHCR36 interacts with type 2 diabetes status to influence subclinical atherosclerosis (measured by carotid intima-media thickness). Diabetologia 57:1159–1172

    CAS  PubMed  Google Scholar 

  37. Sheehan NA, Didelez V, Burton PR, Tobin MD (2008) Mendelian randomisation and causal inference in observational epidemiology. PLoS Med 5:e177

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jiang X, O’Reilly PF, Aschard H et al (2018) Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nat Commun 9:260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Grant support: Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under Award Numbers U10CA180821 and U10CA180882 (to the Alliance for Clinical Trials in Oncology), U10CA180790, U10CA180820 (ECOG-ACRIN), U10CA180838, U10CA180867, U10CA180888 (SWOG), and U24CA196171. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Yuan.

Ethics declarations

Conflict of interest

Charles S. Fuchs declares consulting for Agios, Bain Capital, Bayer, Celgene, Dicerna, Eli Lilly, Entrinsic Health, Five Prime Therapeutics, Genentech, Gilead Sciences, KEW, Merck, Merrimack Pharmaceuticals, Pfizer, Sanofi, Taiho, and Unum Therapeutics. He also serves as a Director for CytomX Therapeutics and owns unexercised stock options for CytomX Therapeutics and Entrinsic Health. Other authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Renfro, L., Ambadwar, P.B. et al. Influence of genetic variation in the vitamin D pathway on plasma 25-hydroxyvitamin D3 levels and survival among patients with metastatic colorectal cancer. Cancer Causes Control 30, 757–765 (2019). https://doi.org/10.1007/s10552-019-01183-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-019-01183-1

Keywords

Navigation