Skip to main content

Advertisement

Log in

Genetic variation in multiple biologic pathways, flavonoid intake, and breast cancer

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

We previously reported an inverse association between flavonoid intake and breast cancer incidence, which has been confirmed by others, but no studies have considered simultaneously potential interactions of flavonoids with multiple genetic polymorphisms involved in biologically relevant pathways (oxidative stress, carcinogen metabolism, DNA repair, and one-carbon metabolism).

Methods

To estimate interaction effects between flavonoids and 13 polymorphisms in these four pathways on breast cancer risk, we used population-based data (n = 875 cases and 903 controls) and several statistical approaches, including conventional logistic regression and semi-Bayesian hierarchical modeling (incorporating prior information on the possible biologic functions of genes), which also provides biologic pathway-specific effect estimates.

Results

Compared to the standard multivariate model, the results from the hierarchical model indicate that gene-by-flavonoid interaction estimates are attenuated, but more precise. In the hierarchical model, the average effect of the deleterious versus beneficial gene, controlling for average flavonoid intake in the DNA repair pathway, and adjusted for the three other biologically relevant pathways (oxidative stress, carcinogen metabolism, and one-carbon metabolism), resulted in a 27 % increase risk for breast cancer [odds ratio = 1.27; 95 % confidence interval (CI) = 0.70, 2.29]. However, the CI was wide.

Conclusions

Based on results from the semi-Bayesian model, breast cancer risk may be influenced jointly by flavonoid intake and genes involved in DNA repair, but our findings require confirmation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fink BN, Steck SE, Wolff MS, Britton JA, Kabat GC, Schroeder JC, Teitelbaum SL, Neugut AI, Gammon MD (2007) Dietary flavonoid intake and breast cancer risk among women on Long Island. Am J Epidemiol 165:514–523

    Article  PubMed  Google Scholar 

  2. Peterson J, Lagiou P, Samoli E, Lagiou A, Katsouyanni K, La Vecchia C, Dwyer J, Trichopoulos D (2003) Flavonoid intake and breast cancer risk: a case–control study in Greece. Br J Cancer 89:1255–1259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bosetti C, Spertini L, Parpinel M, Gnagnarella P, Lagiou P, Negri E, Franceschi S, Montella M, Peterson J, Dwyer J, Giacosa A, La Vecchia C (2005) Flavonoids and breast cancer risk in Italy. Cancer Epidemiol Biomarkers Prev 14:805–808

    Article  CAS  PubMed  Google Scholar 

  4. Rossi M, Bosetti C, Negri E, Lagiou P, La Vecchia C (2010) Flavonoids, proanthocyanidins, and cancer risk: a network of case–control studies from Italy. Nutr Cancer 62:871–877

    Article  CAS  PubMed  Google Scholar 

  5. Dai Q, Franke AA, Jin F, Shu XO, Hebert JR, Custer LJ, Cheng J, Gao YT, Zheng W (2002) Urinary excretion of phytoestrogens and risk of breast cancer among Chinese women in Shanghai. Cancer Epidemiol Biomarkers Prev 11:815–821

    CAS  PubMed  Google Scholar 

  6. Parl FF, Dawling S, Roodi N, Crooke PS (2009) Estrogen metabolism and breast cancer: a risk model. Ann NY Acad Sci 1155:68–75

    Article  CAS  PubMed  Google Scholar 

  7. Kumar NB, Cantor A, Allen K, Riccardi D, Cox CE (2002) The specific role of isoflavones on estrogen metabolism in premenopausal women. Cancer 94:1166–1174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Brownson DM, Azios NG, Fuqua BK, Dharmawardhane SF, Mabry TJ (2002) Flavonoid effects relevant to cancer. J Nutr 132:3482S–3489S

    CAS  PubMed  Google Scholar 

  9. Moon YJ, Wang X, Morris ME (2006) Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol In Vitro 20:187–210

    Article  CAS  PubMed  Google Scholar 

  10. Pahari B, Chakraborty S, Chaudhuri S, Sengupta B and Sengupta PK (2011) Binding and antioxidant properties of therapeutically important plant flavonoids in biomembranes: insights from spectroscopic and quantum chemical studies. Chem Phys Lipids 165:488–496

    Google Scholar 

  11. Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    Article  CAS  PubMed  Google Scholar 

  12. Fernandez-Pachon MS, Berna G, Otaolaurruchi E, Troncoso AM, Martin F, Garcia-Parrilla MC (2009) Changes in antioxidant endogenous enzymes (activity and gene expression levels) after repeated red wine intake. J Agric Food Chem 57:6578–6583

    Article  PubMed  Google Scholar 

  13. Sun L, Zhang J, Lu X, Zhang L, Zhang Y (2011) Evaluation to the antioxidant activity of total flavonoids extract from persimmon (Diospyros kaki L.) leaves. Food Chem Toxicol 49:2689–2696

    Article  CAS  PubMed  Google Scholar 

  14. Rohrdanz E, Ohler S, Tran-Thi QH, Kahl R (2002) The phytoestrogen daidzein affects the antioxidant enzyme system of rat hepatoma H4IIE cells. J Nutr 132:370–375

    CAS  PubMed  Google Scholar 

  15. Petacci F, Freitas SS, Brunetti IL, Khalil NM (2010) Inhibition of peroxidase activity and scavenging of reactive oxygen species by astilbin isolated from Dimorphandra mollis (Fabaceae, Caesalpinioideae). Biol Res 43:63–74

    Article  CAS  PubMed  Google Scholar 

  16. Gao K, Henning SM, Niu Y, Youssefian AA, Seeram NP, Xu A, Heber D (2006) The citrus flavonoid naringenin stimulates DNA repair in prostate cancer cells. J Nutr Biochem 17:89–95

    Article  CAS  PubMed  Google Scholar 

  17. Min K, Ebeler SE (2009) Quercetin inhibits hydrogen peroxide-induced DNA damage and enhances DNA repair in Caco-2 cells. Food Chem Toxicol 47:2716–2722

    Article  CAS  PubMed  Google Scholar 

  18. Lee WJ, Shim JY, Zhu BT (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68:1018–1030

    Article  CAS  PubMed  Google Scholar 

  19. Mitchell AE, Burns SA, Rudolf JL (2007) Isozyme- and gender-specific induction of glutathione S-transferases by flavonoids. Arch Toxicol 81:777–784

    Article  CAS  PubMed  Google Scholar 

  20. Singh-Gupta V, Joiner MC, Runyan L, Yunker CK, Sarkar FH, Miller S, Gadgeel SM, Konski AA, Hillman GG (2011) Soy isoflavones augment radiation effect by inhibiting APE1/Ref-1 DNA repair activity in non-small cell lung cancer. J Thorac Oncol 6:688–698

    Article  PubMed  Google Scholar 

  21. Fang M, Chen D, Yang CS (2007) Dietary polyphenols may affect DNA methylation. J Nutr 137:223S–228S

    CAS  PubMed  Google Scholar 

  22. Inoue M, Robien K, Wang R, Van Den Berg DJ, Koh WP, Yu MC (2008) Green tea intake, MTHFR/TYMS genotype and breast cancer risk: the Singapore Chinese Health Study. Carcinogenesis 29:1967–1972

    Article  CAS  PubMed  Google Scholar 

  23. Wang Q, Li H, Tao P, Wang YP, Yuan P, Yang CX, Li JY, Yang F, Lee H, Huang Y (2011) Soy isoflavones, CYP1A1, CYP1B1, and COMT polymorphisms, and breast cancer: a case-control study in southwestern China. DNA Cell Biol 30:585–595

    Article  CAS  PubMed  Google Scholar 

  24. Hung RJ, Brennan P, Malaveille C, Porru S, Donato F, Boffetta P, Witte JS (2004) Using hierarchical modeling in genetic association studies with multiple markers: application to a case-control study of bladder cancer. Cancer Epidemiol Biomarkers Prev 13:1013–1021

    CAS  PubMed  Google Scholar 

  25. Witte JS, Greenland S, Haile RW, Bird CL (1994) Hierarchical regression analysis applied to a study of multiple dietary exposures and breast cancer. Epidemiology 5:612–621

    Article  CAS  PubMed  Google Scholar 

  26. Gammon MD, Neugut AI, Santella RM, Teitelbaum SL, Britton JA, Terry MB, Eng SM, Wolff MS, Stellman SD, Kabat GC, Levin B, Bradlow HL, Hatch M, Beyea J, Camann D, Trent M, Senie RT, Garbowski GC, Maffeo C, Montalvan P, Berkowitz GS, Kemeny M, Citron M, Schnabe F, Schuss A, Hajdu S, Vincguerra V, Collman GW, Obrams GI (2002) The long Island breast cancer study project: description of a multi-institutional collaboration to identify environmental risk factors for breast cancer. Breast Cancer Res Treat 74:235–254

    Article  CAS  PubMed  Google Scholar 

  27. Waksberg J (1978) Sampling methods for random digit dialing. J Amer Statistic Assoc 73(361):40–46

    Article  Google Scholar 

  28. Block G, Hartman AM, Dresser CM, Carroll MD, Gannon J, Gardner L (1986) A data-based approach to diet questionnaire design and testing. Am J Epidemiol 124:453–469

    CAS  PubMed  Google Scholar 

  29. Block G, Woods M, Potosky A, Clifford C (1990) Validation of a self-administered diet history questionnaire using multiple diet records. J Clin Epidemiol 43:1327–1335

    Article  CAS  PubMed  Google Scholar 

  30. Potischman N, Swanson CA, Coates RJ, Weiss HA, Brogan DR, Stanford JL, Schoenberg JB, Gammon MD, Brinton LA (1997) Dietary relationships with early onset (under age 45) breast cancer in a case-control study in the United States: influence of chemotherapy treatment. Cancer Causes Control 8:713–721

    Article  CAS  PubMed  Google Scholar 

  31. Fink BN, Steck SE, Wolff MS, Kabat GC, Gammon MD (2006) Construction of a flavonoid database for assessing intake in a population-based sample of women on Long Island. N. Y. Nutr Cancer 56:57–66

    Article  CAS  Google Scholar 

  32. Gammon MD, Santella RM, Neugut AI, Eng SM, Teitelbaum SL, Paykin A, Levin B, Terry MB, Young TL, Wang LW, Wang Q, Britton JA, Wolff MS, Stellman SD, Hatch M, Kabat GC, Senie R, Garbowski G, Maffeo C, Montalvan P, Berkowitz G, Kemeny M, Citron M, Schnabel F, Schuss A, Hajdu S, Vinceguerra V (2002) Environmental toxins and breast cancer on Long Island. I. Polycyclic aromatic hydrocarbon DNA adducts. Cancer Epidemiol Biomarkers Prev 11:677–685

    CAS  PubMed  Google Scholar 

  33. Borras C, Gambini J, Gomez-Cabrera MC, Sastre J, Pallardo FV, Mann GE, Vina J (2006) Genistein, a soy isoflavone, up-regulates expression of antioxidant genes: involvement of estrogen receptors, ERK1/2, and NFkappaB. FASEB J 20:2136–2138

    Article  CAS  PubMed  Google Scholar 

  34. Wiegand H, Boesch-Saadatmandi C, Regos I, Treutter D, Wolffram S, Rimbach G (2009) Effects of quercetin and catechin on hepatic glutathione-S transferase (GST), NAD(P)H quinone oxidoreductase 1 (NQO1), and antioxidant enzyme activity levels in rats. Nutr Cancer 61:717–722

    Article  CAS  PubMed  Google Scholar 

  35. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    CAS  PubMed  Google Scholar 

  36. Gaudet MM, Gammon MD, Santella RM, Britton JA, Teitelbaum SL, Eng SM, Terry MB, Bensen JT, Schroeder J, Olshan AF, Neugut AI, Ambrosone CB (2005) MnSOD Val-9Ala genotype, pro- and anti-oxidant environmental modifiers, and breast cancer among women on Long Island, New York. Cancer Causes Control 16:1225–1234

    Article  PubMed  Google Scholar 

  37. Ahn J, Gammon MD, Santella RM, Gaudet MM, Britton JA, Teitelbaum SL, Terry MB, Neugut AI, Josephy PD, Ambrosone CB (2004) Myeloperoxidase genotype, fruit and vegetable consumption, and breast cancer risk. Cancer Res 64:7634–7639

    Article  CAS  PubMed  Google Scholar 

  38. Ahn J, Gammon MD, Santella RM, Gaudet MM, Britton JA, Teitelbaum SL, Terry MB, Nowell S, Davis W, Garza C, Neugut AI, Ambrosone CB (2005) Associations between breast cancer risk and the catalase genotype, fruit and vegetable consumption, and supplement use. Am J Epidemiol 162:943–952

    Article  PubMed  Google Scholar 

  39. Gaudet MM, Bensen JT, Schroeder J, Olshan AF, Terry MB, Eng SM, Teitelbaum SL, Britton JA, Lehman TA, Neugut AI, Ambrosone CB, Santella RM, Gammon MD (2006) Catechol-O-methyltransferase haplotypes and breast cancer among women on Long Island. N. Y. Breast Cancer Res Treat 99:235–240

    Article  CAS  Google Scholar 

  40. Ahn J, Gammon MD, Santella RM, Gaudet MM, Britton JA, Teitelbaum SL, Terry MB, Neugut AI, Eng SM, Zhang Y, Garza C, Ambrosone CB (2006) Effects of glutathione S-transferase A1 (GSTA1) genotype and potential modifiers on breast cancer risk. Carcinogenesis 27:1876–1882

    Article  CAS  PubMed  Google Scholar 

  41. Steck SE, Gaudet MM, Britton JA, Teitelbaum SL, Terry MB, Neugut AI, Santella RM, Gammon MD (2007) Interactions among GSTM1, GSTT1 and GSTP1 polymorphisms, cruciferous vegetable intake and breast cancer risk. Carcinogenesis 28:1954–1959

    Article  CAS  PubMed  Google Scholar 

  42. Crew KD, Gammon MD, Terry MB, Zhang FF, Zablotska LB, Agrawal M, Shen J, Long CM, Eng SM, Sagiv SK, Teitelbaum SL, Neugut AI, Santella RM (2007) Polymorphisms in nucleotide excision repair genes, polycyclic aromatic hydrocarbon-DNA adducts, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 16:2033–2041

    Article  CAS  PubMed  Google Scholar 

  43. Chen J, Gammon MD, Chan W, Palomeque C, Wetmur JG, Kabat GC, Teitelbaum SL, Britton JA, Terry MB, Neugut AI, Santella RM (2005) One-carbon metabolism, MTHFR polymorphisms, and risk of breast cancer. Cancer Res 65:1606–1614

    Article  CAS  PubMed  Google Scholar 

  44. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113

    Article  CAS  PubMed  Google Scholar 

  45. McCarty KM, Santella RM, Steck SE, Cleveland RJ, Ahn J, Ambrosone CB, North K, Sagiv SK, Eng SM, Teitelbaum SL, Neugut AI, Gammon MD (2009) PAH-DNA adducts, cigarette smoking, GST polymorphisms, and breast cancer risk. Environ Health Perspect 117:552–558

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Bastaki M, Huen K, Manzanillo P, Chande N, Chen C, Balmes JR, Tager IB, Holland N (2006) Genotype-activity relationship for Mn-superoxide dismutase, glutathione peroxidase 1 and catalase in humans. Pharmacogenet Genomics 16:279–286

    Article  CAS  PubMed  Google Scholar 

  47. Hansson M, Olsson I, Nauseef WM (2006) Biosynthesis, processing, and sorting of human myeloperoxidase. Arch Biochem Biophys 445:214–224

    Article  CAS  PubMed  Google Scholar 

  48. Forsberg L, Lyrenas L, de Faire U, Morgenstern R (2001) A common functional C-T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels. Free Radic Biol Med 30:500–505

    Article  CAS  PubMed  Google Scholar 

  49. Morel F, Rauch C, Coles B, Le Ferrec E, Guillouzo A (2002) The human glutathione transferase alpha locus: genomic organization of the gene cluster and functional characterization of the genetic polymorphism in the hGSTA1 promoter. Pharmacogenetics 12:277–286

    Article  CAS  PubMed  Google Scholar 

  50. Garte S, Gaspari L, Alexandrie AK, Ambrosone C, Autrup H, Autrup JL, Baranova H, Bathum L, Benhamou S, Boffetta P, Bouchardy C, Breskvar K, Brockmoller J, Cascorbi I, Clapper ML, Coutelle C, Daly A, Dell’Omo M, Dolzan V, Dresler CM, Fryer A, Haugen A, Hein DW, Hildesheim A, Hirvonen A, Hsieh LL, Ingelman-Sundberg M, Kalina I, Kang D, Kihara M, Kiyohara C, Kremers P, Lazarus P, Le Marchand L, Lechner MC, van Lieshout EM, London S, Manni JJ, Maugard CM, Morita S, Nazar-Stewart V, Noda K, Oda Y, Parl FF, Pastorelli R, Persson I, Peters WH, Rannug A, Rebbeck T, Risch A, Roelandt L, Romkes M, Ryberg D, Salagovic J, Schoket B, Seidegard J, Shields PG, Sim E, Sinnet D, Strange RC, Stucker I, Sugimura H, To-Figueras J, Vineis P, Yu MC, Taioli E (2001) Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev 10:1239–1248

    CAS  PubMed  Google Scholar 

  51. Lin HJ, Johansson AS, Stenberg G, Materi AM, Park JM, Dai A, Zhou H, Gim JS, Kau IH, Hardy SI, Parker MW, Mannervik B (2003) Naturally occurring Phe151Leu substitution near a conserved folding module lowers stability of glutathione transferase P1-1. Biochim Biophys Acta 1649:16–23

    Article  CAS  PubMed  Google Scholar 

  52. van der Put NM, Gabreels F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK, van den Heuvel LP, Blom HJ (1998) A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 62:1044–1051

    Article  PubMed Central  PubMed  Google Scholar 

  53. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM (1996) Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6:243–250

    Article  CAS  PubMed  Google Scholar 

  54. Syvanen AC, Tilgmann C, Rinne J, Ulmanen I (1997) Genetic polymorphism of catechol-O-methyltransferase (COMT): correlation of genotype with individual variation of S-COMT activity and comparison of the allele frequencies in the normal population and Parkinsonian patients in Finland. Pharmacogenetics 7:65–71

    Article  CAS  PubMed  Google Scholar 

  55. Bagley PJ, Selhub J (1998) A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc Natl Acad Sci USA 95:13217–13220

    Article  CAS  PubMed  Google Scholar 

  56. Chen P, Wiencke J, Aldape K, Kesler-Diaz A, Miike R, Kelsey K, Lee M, Liu J, Wrensch M (2000) Association of an ERCC1 polymorphism with adult-onset glioma. Cancer Epidemiol Biomarkers Prev 9:843–847

    CAS  PubMed  Google Scholar 

  57. Sturgis EM, Dahlstrom KR, Spitz MR, Wei Q (2002) DNA repair gene ERCC1 and ERCC2/XPD polymorphisms and risk of squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg 128:1084–1088

    Article  PubMed  Google Scholar 

  58. Cheng L, Sturgis EM, Eicher SA, Spitz MR, Wei Q (2002) Expression of nucleotide excision repair genes and the risk for squamous cell carcinoma of the head and neck. Cancer 94:393–397

    Article  CAS  PubMed  Google Scholar 

  59. Butkiewicz D, Popanda O, Risch A, Edler L, Dienemann H, Schulz V, Kayser K, Drings P, Bartsch H, Schmezer P (2004) Association between the risk for lung adenocarcinoma and a (-4) G-to-A polymorphism in the XPA gene. Cancer Epidemiol Biomarkers Prev 13:2242–2246

    CAS  PubMed  Google Scholar 

  60. Wu X, Zhao H, Wei Q, Amos CI, Zhang K, Guo Z, Qiao Y, Hong WK, Spitz MR (2003) XPA polymorphism associated with reduced lung cancer risk and a modulating effect on nucleotide excision repair capacity. Carcinogenesis 24:505–509

    Article  CAS  PubMed  Google Scholar 

  61. Hu Z, Wei Q, Wang X, Shen H (2004) DNA repair gene XPD polymorphism and lung cancer risk: a meta-analysis. Lung Cancer 46:1–10

    Article  CAS  PubMed  Google Scholar 

  62. Vogel U, Hedayati M, Dybdahl M, Grossman L, Nexo BA (2001) Polymorphisms of the DNA repair gene XPD: correlations with risk of basal cell carcinoma revisited. Carcinogenesis 22:899–904

    Article  CAS  PubMed  Google Scholar 

  63. Rybicki BA, Conti DV, Moreira A, Cicek M, Casey G, Witte JS (2004) DNA repair gene XRCC1 and XPD polymorphisms and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 13:23–29

    Article  CAS  PubMed  Google Scholar 

  64. Smith TR, Levine EA, Perrier ND, Miller MS, Freimanis RI, Lohman K, Case LD, Xu J, Mohrenweiser HW, Hu JJ (2003) DNA-repair genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev 12:1200–1204

    CAS  PubMed  Google Scholar 

  65. Jeon HS, Kim KM, Park SH, Lee SY, Choi JE, Lee GY, Kam S, Park RW, Kim IS, Kim CH, Jung TH, Park JY (2003) Relationship between XPG codon 1104 polymorphism and risk of primary lung cancer. Carcinogenesis 24:1677–1681

    Article  CAS  PubMed  Google Scholar 

  66. Kumar R, Hoglund L, Zhao C, Forsti A, Snellman E, Hemminki K (2003) Single nucleotide polymorphisms in the XPG gene: determination of role in DNA repair and breast cancer risk. Int J Cancer 103:671–675

    Article  CAS  PubMed  Google Scholar 

  67. Poole C (2001) Low P values or narrow confidence intervals: which are more durable? Epidemiology 12:291–294

    Article  CAS  PubMed  Google Scholar 

  68. Selvin S (2004) Statistical analysis of epidemiologic data. Oxford University Press, Oxford, NY

    Book  Google Scholar 

  69. Rothman KJ, Greenland S, Lash TL (2008) Modern epidemiology. Wolters Kluwer Health/Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  70. Witte JS, Greenland S (1996) Simulation study of hierarchical regression. Stat Med 15:1161–1170

    Article  CAS  PubMed  Google Scholar 

  71. Desantis C, Siegel R, Bandi P, Jemal A (2011) Breast cancer statistics, 2011. CA Cancer J Clin 61(6):408–418

    Article  Google Scholar 

  72. Spencer JP, Abd El Mohsen MM, Minihane AM, Mathers JC (2008) Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. Br J Nutr 99:12–22

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Drs. Duncan Thomas and Charles Poole for their comments on previous versions of this analysis. National Institutes of Health (U01CA/ES66572, P30ES10126, P30ES0090809, P50CA58233, R01CA109753, K07CA102640, and T32CA09529); Department of Defense (BC031746 and W81XWH-06-1-0298); and private foundations (Breast Cancer Research Fund and the American Institute for Cancer Research).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil K. Khankari.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khankari, N.K., Bradshaw, P.T., McCullough, L.E. et al. Genetic variation in multiple biologic pathways, flavonoid intake, and breast cancer. Cancer Causes Control 25, 215–226 (2014). https://doi.org/10.1007/s10552-013-0324-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-013-0324-8

Keywords

Navigation