Skip to main content

Advertisement

Log in

Polymorphisms in oxidative stress genes, physical activity, and breast cancer risk

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

The mechanisms driving the physical activity–breast cancer association are unclear. Exercise both increases reactive oxygen species production, which may transform normal epithelium to a malignant phenotype, and enhances antioxidant capacity, which could protect against subsequent oxidative insult. Given the paradoxical effects of physical activity, the oxidative stress pathway is of interest. Genetic variation in CAT or antioxidant-related polymorphisms may mediate the physical activity–breast cancer association.

Methods

We investigated the main and joint effects of three previously unreported polymorphisms in CAT on breast cancer risk. We also estimated interactions between recreational physical activity (RPA) and 13 polymorphisms in oxidative stress-related genes. Data were from the Long Island Breast Cancer Study Project, with interview and biomarker data available on 1,053 cases and 1,102 controls.

Results

Women with ≥1 variant allele in CAT rs4756146 had a 23 % reduced risk of postmenopausal breast cancer compared with women with the common TT genotype (OR = 0.77; 95 % CI = 0.59–0.99). We observed two statistical interactions between RPA and genes in the antioxidant pathway (p = 0.043 and 0.006 for CAT and GSTP1, respectively). Highly active women harboring variant alleles in CAT rs1001179 were at increased risk of breast cancer compared with women with the common CC genotype (OR = 1.61; 95 % CI, 1.06–2.45). Risk reductions were observed among moderately active women carrying variant alleles in GSTP1 compared with women homozygous for the major allele (OR = 0.56; 95 % CI, 0.38–0.84).

Conclusions

Breast cancer risk may be jointly influenced by RPA and genes involved in the antioxidant pathway, but our findings require confirmation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosone CB (2000) Oxidants and antioxidants in breast cancer. Antioxid Redox Signal 2:903–917

    Article  PubMed  CAS  Google Scholar 

  2. Kang DH (2002) Oxidative stress, DNA damage, and breast cancer. AACN Clin Issues 13:540–549

    Article  PubMed  Google Scholar 

  3. Behrend L, Henderson G, Zwacka RM (2003) Reactive oxygen species in oncogenic transformation. Biochem Soc Trans 31:1441–1444. doi:10.1042/

    Article  PubMed  CAS  Google Scholar 

  4. Caporaso N (2003) The molecular epidemiology of oxidative damage to DNA and cancer. J Natl Cancer Inst 95:1263–1265

    Article  PubMed  CAS  Google Scholar 

  5. Halliwell B (2000) The antioxidant paradox. Lancet 355:1179–1180. doi:10.1016/S0140-6736(00)02075-4

    Article  PubMed  CAS  Google Scholar 

  6. Martin KR, Barrett JC (2002) Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity. Hum Exp Toxicol 21:71–75

    Article  PubMed  CAS  Google Scholar 

  7. Cooke MS, Evans MD, Dizdaroglu M et al (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214. doi:10.1096/fj.02-0752rev

    Article  PubMed  CAS  Google Scholar 

  8. Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267. doi:10.1146/annurev.pharmtox.44.101802.121851

    Article  PubMed  CAS  Google Scholar 

  9. Tas F, Hansel H, Belce A et al (2005) Oxidative stress in breast cancer. Med Oncol 22:11–15. doi:10.1385/MO:22:1:011

    Article  PubMed  CAS  Google Scholar 

  10. Forsberg L, Lyrenas L, de Faire U et al (2001) A common functional C-T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels. Free Radic Biol Med 30:500–505

    Article  PubMed  CAS  Google Scholar 

  11. Ahn J, Gammon MD, Santella RM et al (2005) Associations between breast cancer risk and the catalase genotype, fruit and vegetable consumption, and supplement use. Am J Epidemiol 162:943–952. doi:10.1093/aje/kwi306

    Article  PubMed  Google Scholar 

  12. Nadif R, Mintz M, Jedlicka A et al (2005) Association of CAT polymorphisms with catalase activity and exposure to environmental oxidative stimuli. Free Radic Res 39:1345–1350. doi:10.1080/10715760500306711

    Article  PubMed  CAS  Google Scholar 

  13. Ahn J, Nowell S, McCann SE et al (2006) Associations between catalase phenotype and genotype: modification by epidemiologic factors. Cancer Epidemiol Biomarkers Prev 15:1217–1222. doi:10.1158/1055-9965.EPI-06-0104

    Article  PubMed  CAS  Google Scholar 

  14. Bastaki M, Huen K, Manzanillo P et al (2006) Genotype-activity relationship for Mn-superoxide dismutase, glutathione peroxidase 1 and catalase in humans. Pharmacogenet Genomics 16:279–286. doi:10.1097/01.fpc.0000199498.08725.9c

    Article  PubMed  CAS  Google Scholar 

  15. Quick SK, Shields PG, Nie J et al (2008) Effect modification by catalase genotype suggests a role for oxidative stress in the association of hormone replacement therapy with postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev 17:1082–1087. doi:10.1158/1055-9965.EPI-07-2755

    Article  PubMed  CAS  Google Scholar 

  16. Li Y, Ambrosone CB, McCullough MJ et al (2009) Oxidative stress-related genotypes, fruit and vegetable consumption and breast cancer risk. Carcinogenesis 30:777–784. doi:10.1093/carcin/bgp053

    Article  PubMed  CAS  Google Scholar 

  17. Friedenreich CM, Cust AE (2008) Physical activity and breast cancer risk: impact of timing, type and dose of activity and population subgroup effects. Br J Sports Med 42:636–647. doi:10.1136/bjsm.2006.029132

    Article  PubMed  CAS  Google Scholar 

  18. Rundle A (2005) Molecular epidemiology of physical activity and cancer. Cancer Epidemiol Biomarkers Prev 14:227–236

    Article  PubMed  Google Scholar 

  19. Neilson HK, Friedenreich CM, Brockton NT et al (2009) Physical activity and postmenopausal breast cancer: proposed biologic mechanisms and areas for future research. Cancer Epidemiol Biomarkers Prev 18:11–27. doi:10.1158/1055-9965.EPI-08-0756

    Article  PubMed  CAS  Google Scholar 

  20. McTiernan A (2008) Mechanisms linking physical activity with cancer. Nat Rev Cancer 8:205–211. doi:10.1038/nrc2325

    Article  PubMed  CAS  Google Scholar 

  21. Gammon MD, Neugut AI, Santella RM et al (2002) The Long Island Breast Cancer Study Project: description of a multi-institutional collaboration to identify environmental risk factors for breast cancer. Breast Cancer Res Treat 74:235–254

    Article  PubMed  CAS  Google Scholar 

  22. Zongli X, Taylor J (2009) SNPinfo: Integrating GWAS and candidate gene information into Functional SNP Selection for Genetic Association Studies

  23. International HapMap Consortium (2003) The International HapMap project. Nature 426:789–796. doi:10.1038/nature02168

    Article  Google Scholar 

  24. Terry MB, Gammon MD, Zhang FF et al (2004) Polymorphism in the DNA repair gene XPD, polycyclic aromatic hydrocarbon-DNA adducts, cigarette smoking, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 13:2053–2058

    PubMed  CAS  Google Scholar 

  25. Gaudet MM, Bensen JT, Schroeder J et al (2006) Catechol-O-methyltransferase haplotypes and breast cancer among women on Long Island, New York. Breast Cancer Res Treat 99:235–240. doi:10.1007/s10549-006-9205-0

    Article  PubMed  CAS  Google Scholar 

  26. Ahn J, Gammon MD, Santella RM et al (2005) No association between glutathione peroxidase Pro198Leu polymorphism and breast cancer risk. Cancer Epidemiol Biomarkers Prev 14:2459–2461. doi:10.1158/1055-9965.EPI-05-0459

    Article  PubMed  CAS  Google Scholar 

  27. Ahn J, Gammon MD, Santella RM et al (2006) Effects of glutathione S-transferase A1 (GSTA1) genotype and potential modifiers on breast cancer risk. Carcinogenesis 27:1876–1882. doi:10.1093/carcin/bgl038

    Article  PubMed  CAS  Google Scholar 

  28. Steck SE, Gaudet MM, Britton JA et al (2007) Interactions among GSTM1, GSTT1 and GSTP1 polymorphisms, cruciferous vegetable intake and breast cancer risk. Carcinogenesis 28:1954–1959. doi:10.1093/carcin/bgm141

    Article  PubMed  CAS  Google Scholar 

  29. Gaudet MM, Gammon MD, Santella RM et al (2005) MnSOD Val-9Ala genotype, pro- and anti-oxidant environmental modifiers, and breast cancer among women on Long Island, New York. Cancer Causes Control 16:1225–1234. doi:10.1007/s10552-005-0375-6

    Article  PubMed  Google Scholar 

  30. Ahn J, Gammon MD, Santella RM et al (2004) Myeloperoxidase genotype, fruit and vegetable consumption, and breast cancer risk. Cancer Res 64:7634–7639. doi:10.1158/0008-5472.CAN-04-1843

    Article  PubMed  CAS  Google Scholar 

  31. Bernstein L, Henderson BE, Hanisch R et al (1994) Physical exercise and reduced risk of breast cancer in young women. J Natl Cancer Inst 86:1403–1408

    Article  PubMed  CAS  Google Scholar 

  32. McCullough LE, Eng SM, Bradshaw PT et al (2012) Fat or fit: the joint effects of physical activity, weight gain, and body size on breast cancer risk. Cancer. doi:10.1002/cncr.27433

    PubMed  Google Scholar 

  33. Ziegler A, Konig I (2006) A statistical approach to genetic epidemiology. Wiley, New York

    Google Scholar 

  34. Kleinbaum DG, Klein M (2002) Logistic Regression: A Self-Learning Text, 2nd edn. Springer, New York

    Google Scholar 

  35. Greenland S, Brumback B (2002) An overview of relations among causal modelling methods. Int J Epidemiol 31:1030–1037

    Article  PubMed  Google Scholar 

  36. Greenland S (1989) Modeling and variable selection in epidemiologic analysis. Am J Public Health 79:340–349

    Article  PubMed  CAS  Google Scholar 

  37. Breslow NE, Day NE (1980) Statistical methods in cancer research. volume i—the analysis of case-control studies. International Agency for Research on Cancer, Lyon

  38. Yang XR, Chang-Claude J, Goode EL et al (2011) Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. J Natl Cancer Inst 103:250–263. doi:10.1093/jnci/djq526

    Article  PubMed  Google Scholar 

  39. Assmann SF, Hosmer DW, Lemeshow S et al (1996) Confidence intervals for measures of interaction. Epidemiology 7:286–290

    Article  PubMed  CAS  Google Scholar 

  40. Rothman K, Greenland S (1998) Modern Epidemiology, 2nd edn. Maple Press, Philadelphia

    Google Scholar 

  41. Kanter MM (1994) Free radicals, exercise, and antioxidant supplementation. Int J Sport Nutr 4:205–220

    PubMed  CAS  Google Scholar 

  42. Ayres S, Baer J, Subbiah MT (1998) Exercised-induced increase in lipid peroxidation parameters in amenorrheic female athletes. Fertil Steril 69:73–77

    Article  PubMed  CAS  Google Scholar 

  43. Clarkson PM, Thompson HS (2000) Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr 72:637S–646S

    PubMed  CAS  Google Scholar 

  44. Singh VN (1992) A current perspective on nutrition and exercise. J Nutr 122:760–765

    PubMed  CAS  Google Scholar 

  45. Guerra A, Rego C, Castro E et al (2000) LDL peroxidation in adolescent female gymnasts. Rev Port Cardiol 19:1129–1140

    PubMed  CAS  Google Scholar 

  46. Guerra A, Rego C, Laires MJ et al (2001) Lipid profile and redox status in high performance rhythmic female teenagers gymnasts. J Sports Med Phys Fitness 41:505–512

    PubMed  CAS  Google Scholar 

  47. Vani M, Reddy GP, Reddy GR et al (1990) Glutathione-S-transferase, superoxide dismutase, xanthine oxidase, catalase, glutathione peroxidase and lipid peroxidation in the liver of exercised rats. Biochem Int 21:17–26

    PubMed  CAS  Google Scholar 

  48. Evelo CT, Palmen NG, Artur Y et al (1992) Changes in blood glutathione concentrations, and in erythrocyte glutathione reductase and glutathione S-transferase activity after running training and after participation in contests. Eur J Appl Physiol Occup Physiol 64:354–358

    Article  PubMed  CAS  Google Scholar 

  49. Miyazaki H, Oh-ishi S, Ookawara T et al (2001) Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur J Appl Physiol 84:1–6

    Article  PubMed  CAS  Google Scholar 

  50. Powers SK, Ji LL, Leeuwenburgh C (1999) Exercise training-induced alterations in skeletal muscle antioxidant capacity: a brief review. Med Sci Sports Exerc 31:987–997

    Article  PubMed  CAS  Google Scholar 

  51. Radak Z, Chung HY, Goto S (2008) Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med 44:153–159. doi:10.1016/j.freeradbiomed.2007.01.029

    Article  PubMed  CAS  Google Scholar 

  52. Hoffman-Goetz L, Pervaiz N, Guan J (2009) Voluntary exercise training in mice increases the expression of antioxidant enzymes and decreases the expression of TNF-alpha in intestinal lymphocytes. Brain Behav Immun 23:498–506. doi:10.1016/j.bbi.2009.01.015

    Article  PubMed  CAS  Google Scholar 

  53. Siu PM, Pei XM, Teng BT et al (2011) Habitual exercise increases resistance of lymphocytes to oxidant-induced DNA damage by upregulating expression of antioxidant and DNA repairing enzymes. Exp Physiol 96:889–906. doi:10.1113/expphysiol.2011.058396

    PubMed  CAS  Google Scholar 

  54. Hu X, Ji X, Srivastava SK et al (1997) Mechanism of differential catalytic efficiency of two polymorphic forms of human glutathione S-transferase P1–1 in the glutathione conjugation of carcinogenic diol epoxide of chrysene. Arch Biochem Biophys 345:32–38. doi:10.1006/abbi.1997.0269

    Article  PubMed  CAS  Google Scholar 

  55. Sundberg K, Johansson AS, Stenberg G et al (1998) Differences in the catalytic efficiencies of allelic variants of glutathione transferase P1–1 towards carcinogenic diol epoxides of polycyclic aromatic hydrocarbons. Carcinogenesis 19:433–436

    Article  PubMed  CAS  Google Scholar 

  56. Mao GE, Morris G, Lu QY et al (2004) Glutathione S-transferase P1 Ile105Val polymorphism, cigarette smoking and prostate cancer. Cancer Detect Prev 28:368–374. doi:10.1016/j.cdp.2004.07.003

    Article  PubMed  CAS  Google Scholar 

  57. Schaid DJ, Jacobsen SJ (1999) Biased tests of association: comparisons of allele frequencies when departing from Hardy-Weinberg proportions. Am J Epidemiol 149:706–711

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Cancer Institute and the National Institutes of Environmental Health and Sciences (Grant nos. UO1CA/ES66572, P30ES009089, and P30ES10126), the Department of Defense (Grant no. BC093608), and the University of North Carolina Lineberger Comprehensive Cancer Center Breast Cancer SPORE (Grant no. P50CA058223). Drs. Santella and Ambrosone are recipients of funding from the Breast Cancer Research Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren E. McCullough.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCullough, L.E., Santella, R.M., Cleveland, R.J. et al. Polymorphisms in oxidative stress genes, physical activity, and breast cancer risk. Cancer Causes Control 23, 1949–1958 (2012). https://doi.org/10.1007/s10552-012-0072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-012-0072-1

Keywords

Navigation