Skip to main content
Log in

A case-parent triad assessment of folate metabolic genes and the risk of childhood acute lymphoblastic leukemia

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

We conducted a case-parent triad study evaluating the role of maternal and offspring genotypes in the folate metabolic pathway on childhood acute lymphoblastic leukemia (ALL) risk.

Methods

Childhood ALL case-parent triads (n = 120) were recruited from Texas Children’s Hospital. DNA samples were genotyped using the Sequenom iPLEX MassARRAY for 68 tagSNPs in six folate metabolic pathway genes (MTHFR, MTRR, MTR, DHFR, BHMT, and TYMS). Log-linear modeling was used to examine the associations between maternal and offspring genotypes and ALL.

Results

After controlling for the false discovery rate (<0.1), there were 20 significant maternal effects in the following genes: BHMT (n = 3), MTR (n = 12), and TYMS (n = 5). For instance, maternal genotypes for BHMT rs558133 (relative risk [RR] = 0.51, 95 % confidence interval [CI]: 0.30–0.87, p = 0.008, Q = 0.08) and MTR rs2282369 (RR = 0.46, 95 % CI: 0.27–0.80, p = 0.004, Q = 0.08) were associated with ALL. There were no significant offspring effects after controlling for the false discovery rate.

Conclusions

This is one of the few studies conducted to evaluate maternal genetic effects in the context of childhood ALL risk. Furthermore, we employed a family-based design that is less susceptible to population stratification bias in the estimation of maternal genetic effects. Our findings suggest that maternal genetic variation in the folate metabolic pathway is relevant in the etiology of childhood ALL. The observed maternal genetic effects support the need for continued research of how the uterine environment may influence risk of ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Margolin JF, Rabin KR, Steuber CP, Poplack DG (2011) Acute lymphoblastic leukemia. In: Pizzo PA, Poplack DG (eds) Principles and practice of pediatric oncology. Lippincott Williams & Wilkins, Philadelphia, pp 518–565

    Google Scholar 

  2. Surveillance Epidemiology and End Results (2011) Childhood Cancer. http://seer.cancer.gov/csr/1975_2008/results_merged/sect_28_childhood_cancer.pdf. Accessed 22 Jan 2012

  3. Pui CH, Evans WE (2006) Treatment of acute lymphoblastic leukemia. N Engl J Med 354(2):166–178. doi:10.1056/NEJMra052603

    Article  PubMed  CAS  Google Scholar 

  4. Bas Suarez MP, Lopez Brito J, Santana Reyes C, Gresa Munoz M, Diaz Pulido R, Lodos Rojas JC (2011) Congenital acute lymphoblastic leukemia: a two-case report and a review of the literature. Eur J Pediatr 170(4):531–534. doi:10.1007/s00431-010-1339-8

    Article  PubMed  Google Scholar 

  5. Sherborne AL, Hemminki K, Kumar R, Bartram CR, Stanulla M, Schrappe M, Petridou E, Semsei AF, Szalai C, Sinnett D, Krajinovic M, Healy J, Lanciotti M, Dufour C, Indaco S, El-Ghouroury EA, Sawangpanich R, Hongeng S, Pakakasama S, Gonzalez-Neira A, Ugarte EL, Leal VP, Espinoza JP, Kamel AM, Ebid GT, Radwan ER, Yalin S, Yalin E, Berkoz M, Simpson J, Roman E, Lightfoot T, Hosking FJ, Vijayakrishnan J, Greaves M, Houlston RS (2011) Rationale for an international consortium to study inherited genetic susceptibility to childhood acute lymphoblastic leukemia. Haematologica 96(7):1049–1054. doi:10.3324/haematol.2011.040121

    Article  PubMed  Google Scholar 

  6. Vijayakrishnan J, Houlston RS (2010) Candidate gene association studies and risk of childhood acute lymphoblastic leukemia: a systematic review and meta-analysis. Haematologica 95(8):1405–1414. doi:10.3324/haematol.2010.022095

    Article  PubMed  CAS  Google Scholar 

  7. Papaemmanuil E, Hosking FJ, Vijayakrishnan J, Price A, Olver B, Sheridan E, Kinsey SE, Lightfoot T, Roman E, Irving JA, Allan JM, Tomlinson IP, Taylor M, Greaves M, Houlston RS (2009) Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet 41(9):1006–1010. doi:10.1038/ng.430

    Article  PubMed  CAS  Google Scholar 

  8. Sherborne AL, Hosking FJ, Prasad RB, Kumar R, Koehler R, Vijayakrishnan J, Papaemmanuil E, Bartram CR, Stanulla M, Schrappe M, Gast A, Dobbins SE, Ma Y, Sheridan E, Taylor M, Kinsey SE, Lightfoot T, Roman E, Irving JA, Allan JM, Moorman AV, Harrison CJ, Tomlinson IP, Richards S, Zimmermann M, Szalai C, Semsei AF, Erdelyi DJ, Krajinovic M, Sinnett D, Healy J, Gonzalez Neira A, Kawamata N, Ogawa S, Koeffler HP, Hemminki K, Greaves M, Houlston RS (2010) Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nat Genet 42(6):492–494. doi:10.1038/ng.585

    Google Scholar 

  9. Trevino LR, Yang W, French D, Hunger SP, Carroll WL, Devidas M, Willman C, Neale G, Downing J, Raimondi SC, Pui CH, Evans WE, Relling MV (2009) Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nature Genet 41(9):1001–1005. doi:10.1038/ng.432

    Article  PubMed  CAS  Google Scholar 

  10. Koppen IJ, Hermans FJ, Kaspers GJ (2010) Folate related gene polymorphisms and susceptibility to develop childhood acute lymphoblastic leukaemia. Br J Haematol 148(1):3–14. doi:10.1111/j.1365-2141.2009.07898.x

    Article  PubMed  CAS  Google Scholar 

  11. Yan J, Yin M, Dreyer ZE, Scheurer ME, Kamdar K, Wei Q, Okcu MF (2012) A meta-analysis of MTHFR C677T and A1298C polymorphisms and risk of acute lymphoblastic leukemia in children. Pediatr Blood Cancer 58(4):513–518. doi:10.1002/pbc.23137

    Article  PubMed  Google Scholar 

  12. Metayer C, Scelo G, Chokkalingam AP, Barcellos LF, Aldrich MC, Chang JS, Guha N, Urayama KY, Hansen HM, Block G, Kiley V, Wiencke JK, Wiemels JL, Buffler PA (2011) Genetic variants in the folate pathway and risk of childhood acute lymphoblastic leukemia. Cancer Causes Control 22(9):1243–1258. doi:10.1007/s10552-011-9795-7

    Article  PubMed  Google Scholar 

  13. Lightfoot TJ, Johnston WT, Painter D, Simpson J, Roman E, Skibola CF, Smith MT, Allan JM, Taylor GM (2010) Genetic variation in the folate metabolic pathway and risk of childhood leukemia. Blood 115(19):3923–3929. doi:10.1182/blood-2009-10-249722

    Article  PubMed  CAS  Google Scholar 

  14. Infante-Rivard C, Vermunt JK, Weinberg CR (2007) Excess transmission of the NAD(P)H:quinone oxidoreductase 1 (NQO1) C609T polymorphism in families of children with acute lymphoblastic leukemia. Am J Epidemiol 165(11):1248–1254

    Article  PubMed  Google Scholar 

  15. Weinberg CR, Wilcox AJ, Lie RT (1998) A log-linear approach to case-parent-triad data: assessing effects of disease genes that act either directly or through maternal effects and that may be subject to parental imprinting. Am J Hum Genet 62(4):969–978. doi:10.1086/301802

    Article  PubMed  CAS  Google Scholar 

  16. Weinberg CR (1999) Allowing for missing parents in genetic studies of case-parent triads. Am J Hum Genet 64(4):1186–1193

    Article  PubMed  CAS  Google Scholar 

  17. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA (2004) Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 74(1):106–120. doi:10.1086/381000

    Article  PubMed  CAS  Google Scholar 

  18. National Heart L, and Blood Institute (2010) GVS: genome variation server version 5.11. http://gvs.gs.washington.edu/GVS/. Accessed 24 Jan 2012

  19. Salanti G, Southam L, Altshuler D, Ardlie K, Barroso I, Boehnke M, Cornelis MC, Frayling TM, Grallert H, Grarup N, Groop L, Hansen T, Hattersley AT, Hu FB, Hveem K, Illig T, Kuusisto J, Laakso M, Langenberg C, Lyssenko V, McCarthy MI, Morris A, Morris AD, Palmer CN, Payne F, Platou CG, Scott LJ, Voight BF, Wareham NJ, Zeggini E, Ioannidis JP (2009) Underlying genetic models of inheritance in established type 2 diabetes associations. Am J Epidemiol 170(5):537–545. doi:10.1093/aje/kwp145

    Article  PubMed  Google Scholar 

  20. Wilcox AJ, Weinberg CR, Lie RT (1998) Distinguishing the effects of maternal and offspring genes through studies of “case-parent triads”. Am J Epidemiol 148(9):893–901

    Article  PubMed  CAS  Google Scholar 

  21. Agopian AJ, Mitchell LE (2011) MI-GWAS: a SAS platform for the analysis of inherited and maternal genetic effects in genome-wide association studies using log-linear models. BMC Bioinformatics 12:117. doi:10.1186/1471-2105-12-117

    Article  PubMed  CAS  Google Scholar 

  22. Vermunt JK (1997) LEM: A general program for the analysis of categorical data. Tilberg University. http://spitswww.uvt.nl/~vermunt/. Accessed 20 Aug 2012

  23. Mitchell LE, Weinberg CR (2005) Evaluation of offspring and maternal genetic effects on disease risk using a family-based approach: the “pent” design. Am J Epidemiol 162(7):676–685. doi:10.1093/aje/kwi249

    Article  PubMed  Google Scholar 

  24. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 57(1):289–300

    Google Scholar 

  25. Krajinovic M, Lamothe S, Labuda D, Lemieux-Blanchard E, Theoret Y, Moghrabi A, Sinnett D (2004) Role of MTHFR genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Blood 103(1):252–257. doi:10.1182/blood-2003-06-1794

    Article  PubMed  CAS  Google Scholar 

  26. Mostowska A, Hozyasz KK, Biedziak B, Misiak J, Jagodzinski PP (2010) Polymorphisms located in the region containing BHMT and BHMT2 genes as maternal protective factors for orofacial clefts. Eur J Oral Sci 118(4):325–332. doi:10.1111/j.1600-0722.2010.00757.x

    Article  PubMed  CAS  Google Scholar 

  27. Oikawa S, Murakami K, Kawanishi S (2003) Oxidative damage to cellular and isolated DNA by homocysteine: implications for carcinogenesis. Oncogene 22(23):3530–3538. doi:10.1038/sj.onc.1206440

    Article  PubMed  CAS  Google Scholar 

  28. Martinez CA, Northrup H, Lin JI, Morrison AC, Fletcher JM, Tyerman GH, Au KS (2009) Genetic association study of putative functional single nucleotide polymorphisms of genes in folate metabolism and spina bifida. Am J Obstet Gynecol 201(4):394.e1–11. doi:10.1016/j.ajog.2009.06.04

    Google Scholar 

  29. Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, Wickramasinghe SN, Everson RB, Ames BN (1997) Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci USA 94(7):3290–3295

    Article  PubMed  CAS  Google Scholar 

  30. Skibola CF, Smith MT, Hubbard A, Shane B, Roberts AC, Law GR, Rollinson S, Roman E, Cartwright RA, Morgan GJ (2002) Polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and risk of adult acute lymphocytic leukemia. Blood 99(10):3786–3791

    Article  PubMed  CAS  Google Scholar 

  31. Canalle R, Silveira VS, Scrideli CA, Queiroz RG, Lopes LF, Tone LG (2011) Impact of thymidylate synthase promoter and DNA repair gene polymorphisms on susceptibility to childhood acute lymphoblastic leukemia. Leuk Lymph 52(6):1118–1126. doi:10.3109/10428194.2011.559672

    Article  CAS  Google Scholar 

  32. Goldmuntz E, Woyciechowski S, Renstrom D, Lupo PJ, Mitchell LE (2008) Variants of folate metabolism genes and the risk of conotruncal cardiac defects. Circ Cardiovasc Genet 1(2):126–132. doi:10.1161/CIRCGENETICS.108.796342

    Article  PubMed  CAS  Google Scholar 

  33. Lupo PJ, Mitchell LE, Goldmuntz E (2011) NAT1, NOS3, and TYMS genotypes and the risk of conotruncal cardiac defects. Birth Defects Res A Clin Mol Teratol 91(1):61–65. doi:10.1002/bdra.20745

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The genotyping for this work was supported by an Inter-Institutional Pilot Project (to M.E.S. and P.J.L.) from the Dan L. Duncan Cancer Center at Baylor College of Medicine, P30CA125123 (PI: Osborne). M.E.S. was also supported in part by an NCI Career Development Award, K07CA131505. The authors would also like to thank Ms. Megan Grove-Gaona for her technical assistance and the families who participated in this study.

Conflicts of interest

The authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Scheurer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lupo, P.J., Nousome, D., Kamdar, K.Y. et al. A case-parent triad assessment of folate metabolic genes and the risk of childhood acute lymphoblastic leukemia. Cancer Causes Control 23, 1797–1803 (2012). https://doi.org/10.1007/s10552-012-0058-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-012-0058-z

Keywords

Navigation