Skip to main content
Log in

Genetic variation in hormone metabolizing genes and risk of testicular germ cell tumors

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Testicular germ cell tumors (TGCT) that arise in young men are composed of two histologic types, seminomas and nonseminomas. Risk patterns for the two types appear to be similar and may be related to either endogenous or exogenous hormonal exposures in utero. Why similar risk patterns would result in different histologic types is unclear, but could be related to varying genetic susceptibility profiles. Genetic variation in hormone metabolizing genes could potentially modify hormonal exposures, and thereby affect which histologic type a man develops. To examine this hypothesis, 33 single nucleotide polymorphisms (SNPs) in four hormone metabolism candidate genes (CYP1A1, CYP17A1, HSD17B1, HSD17B4) and the androgen receptor gene (AR) were genotyped. Associations with TGCT were evaluated among 577 TGCT cases (254 seminoma, 323 nonseminoma) and 707 controls from the US Servicemen’s Testicular Tumor Environmental and Endocrine Determinants (STEED) study. There were no significant associations with TGCT overall based on a test using an additive model. However, compared to homozygotes of the most common allele, two nonredundant SNPs in CYP1A1 were inversely associated with nonseminoma: CYP1A1 promoter SNP rs4886605 OR = 0.75 (95% CI = 0.54–1.04) among the heterozygotes and OR = 0.37, 95% CI = 0.12–1.11 among the homozygotes with a p-value for trend = 0.02; rs2606345 intron 1 SNP, OR = 0.69 (95% CI = 0.51–0.93) among heterozygotes and OR = 0.70 (95% CI = 0.42–1.17) among homozygotes, with a p-value for trend = 0.02. Caution in interpretation is warranted until findings are replicated in other studies; however, the results suggest that genetic variation in CYP1A1 may be associated with nonseminoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McGlynn KA, Devesa SS, Sigurdson AJ, Brown LM, Tsao L, Tarone RE (2003) Trends in the incidence of testicular germ cell tumors in the United States. Cancer 97(1):63–70

    Article  PubMed  Google Scholar 

  2. Garner MJ, Turner MC, Ghadirian P, Krewski D (2005) Epidemiology of testicular cancer: an overview. Int J Cancer 116(3):331–339

    Article  PubMed  CAS  Google Scholar 

  3. McGlynn KA (2001) Environmental and host factors in testicular germ cell tumors. Cancer Invest 19(8):842–853

    Article  PubMed  CAS  Google Scholar 

  4. Petridou E, Roukas KI, Dessypris N, Aravantinos G, Bafaloukos D, Efraimidis A et al (1997) Baldness and other correlates of sex hormones in relation to testicular cancer. Int J Cancer 71(6):982–985

    Article  PubMed  CAS  Google Scholar 

  5. Bernstein L, Depue RH, Ross RK, Judd HL, Pike MC, Henderson BE (1986) Higher maternal levels of free estradiol in first compared to second pregnancy: early gestational differences. J Natl Cancer Inst 76(6):1035–1039

    PubMed  CAS  Google Scholar 

  6. Zhang Y, Graubard BI, Klebanoff MA, Ronckers C, Stanczyk FZ, Longnecker MP et al (2005) Maternal hormone levels among populations at high and low risk of testicular germ cell cancer. Br J Cancer 92(9):1787–1793

    Article  PubMed  CAS  Google Scholar 

  7. Zhang Y, Graubard BI, Longnecker MP, Stanczyk FZ, Klebanoff MA, McGlynn KA (2007) Maternal hormone levels and perinatal characteristics: implications for testicular cancer. Ann Epidemiol 17(2):85–92

    Article  PubMed  CAS  Google Scholar 

  8. Storgaard L, Bonde JP, Olsen J (2006) Male reproductive disorders in humans and prenatal indicators of estrogen exposure. A review of published epidemiological studies. Reprod Toxicol 21(1):4–15

    Article  PubMed  CAS  Google Scholar 

  9. Strohsnitter WC, Noller KL, Hoover RN, Robboy SJ, Palmer JR, Titus-Ernstoff L et al (2001) Cancer risk in men exposed in utero to diethylstilbestrol. J Natl Cancer Inst 93(7):545–551

    Article  PubMed  CAS  Google Scholar 

  10. Walker AH, Bernstein L, Warren DW, Warner NE, Zheng X, Henderson BE (1990) The effect of in utero ethinyl oestradiol exposure on the risk of cryptorchid testis and testicular teratoma in mice. Br J Cancer 62(4):599–602

    PubMed  CAS  Google Scholar 

  11. Weir HK, Marrett LD, Kreiger N, Darlington GA, Sugar L (2000) Pre-natal and peri-natal exposures and risk of testicular germ-cell cancer. Int J Cancer 87(3):438–443

    Article  PubMed  CAS  Google Scholar 

  12. Hardell L, van Bavel B, Lindstrom G, Carlberg M, Dreifaldt AC, Wijkstrom H et al (2003) Increased concentrations of polychlorinated biphenyls, hexachlorobenzene, and chlordanes in mothers of men with testicular cancer. Environ Health Perspect 111(7):930–934

    PubMed  CAS  Google Scholar 

  13. Ohlson CG, Hardell L (2000) Testicular cancer and occupational exposures with a focus on xenoestrogens in polyvinyl chloride plastics. Chemosphere 40(9–11):1277-1282

    Article  PubMed  CAS  Google Scholar 

  14. Toppari J, Larsen JC, Christiansen P, Giwercman A, Grandjean P, Guillette LJ Jr. et al (1996) Male reproductive health and environmental xenoestrogens. Environ Health Perspect 104(Suppl 4):741–803

    Article  PubMed  CAS  Google Scholar 

  15. Freedman ML, Pearce CL, Penney KL, Hirschhorn JN, Kolonel LN, Henderson BE et al (2005) Systematic evaluation of genetic variation at the androgen receptor locus and risk of prostate cancer in a multiethnic cohort study. Am J Hum Genet 76(1):82–90

    Article  PubMed  CAS  Google Scholar 

  16. Birrell SN, Butler LM, Harris JM, Buchanan G, Tilley WD (2007) Disruption of androgen receptor signaling by synthetic progestins may increase risk of developing breast cancer. Faseb J 21(10):2285–2293

    Article  PubMed  CAS  Google Scholar 

  17. Clark PE, Irvine RA, Coetzee GA (2003) The androgen receptor CAG repeat and prostate cancer risk. Methods Mol Med 81:255–266

    PubMed  CAS  Google Scholar 

  18. Gorai I, Inada M, Morinaga H, Uchiyama Y, Yamauchi H, Hirahara F et al (2007) CYP17 and COMT gene polymorphisms can influence bone directly, or indirectly through their effects on endogenous sex steroids, in postmenopausal Japanese women. Bone 40(1):28–36

    Article  PubMed  CAS  Google Scholar 

  19. Huang CS, Chern HD, Chang KJ, Cheng CW, Hsu SM, Shen CY (1999) Breast cancer risk associated with genotype polymorphism of the estrogen-metabolizing genes CYP17, CYP1A1, and COMT: a multigenic study on cancer susceptibility. Cancer Res 59(19):4870–4875

    PubMed  CAS  Google Scholar 

  20. McCann SE, Moysich KB, Freudenheim JL, Ambrosone CB, Shields PG (2002) The risk of breast cancer associated with dietary lignans differs by CYP17 genotype in women. J Nutr 132(10):3036–3041

    PubMed  CAS  Google Scholar 

  21. Akhtar MK, Kelly SL, Kaderbhai MA (2005) Cytochrome b(5) modulation of 17{alpha} hydroxylase and 17–20 lyase (CYP17) activities in steroidogenesis. J Endocrinol 187(2):267–274

    Article  PubMed  CAS  Google Scholar 

  22. Sharp L, Cardy AH, Cotton SC, Little J (2004) CYP17 gene polymorphisms: prevalence and associations with hormone levels and related factors. a HuGE review. Am J Epidemiol 160(8):729–740

    Article  PubMed  CAS  Google Scholar 

  23. Miyoshi Y, Ando A, Hasegawa S, Ishitobi M, Yamamura J, Irahara N et al (2003) Association of genetic polymorphisms in CYP19 and CYP1A1 with the oestrogen receptor-positive breast cancer risk. Eur J Cancer 39(17):2531–2537

    Article  PubMed  CAS  Google Scholar 

  24. Shin A, Kang D, Choi JY, Lee KM, Park SK, Noh DY et al (2007) Cytochrome P450 1A1 (CYP1A1) polymorphisms and breast cancer risk in Korean women. Exp Mol Med 39(3):361–366

    PubMed  CAS  Google Scholar 

  25. Son DS, Roby KF, Rozman KK, Terranova PF (2002) Estradiol enhances and estriol inhibits the expression of CYP1A1 induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in a mouse ovarian cancer cell line. Toxicology 176(3):229–243

    Article  PubMed  CAS  Google Scholar 

  26. Setiawan VW, Hankinson SE, Colditz GA, Hunter DJ, De Vivo I (2004) HSD17B1 gene polymorphisms and risk of endometrial and breast cancer. Cancer Epidemiol Biomarkers Prev 13(2):213–219

    Article  PubMed  CAS  Google Scholar 

  27. Feigelson HS, Cox DG, Cann HM, Wacholder S, Kaaks R, Henderson BE et al (2006) Haplotype analysis of the HSD17B1 gene and risk of breast cancer: a comprehensive approach to multicenter analyses of prospective cohort studies. Cancer Res 66(4):2468–2475

    Article  PubMed  CAS  Google Scholar 

  28. Labrie F, Luu-The V, Lin SX, Labrie C, Simard J, Breton R et al (1997) The key role of 17 beta-hydroxysteroid dehydrogenases in sex steroid biology. Steroids 62(1):148–158

    Article  PubMed  CAS  Google Scholar 

  29. Mindnich R, Moller G, Adamski J (2004) The role of 17 beta-hydroxysteroid dehydrogenases. Mol Cell Endocrinol 218(1–2):7–20

    Article  PubMed  CAS  Google Scholar 

  30. Tsuchiya Y, Nakajima M, Yokoi T (2005) Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett 227(2):115–124

    Article  PubMed  CAS  Google Scholar 

  31. McGlynn KA, Sakoda LC, Rubertone MV, Sesterhenn IA, Lyu C, Graubard BI et al (2007) Body size, dairy consumption, puberty, and risk of testicular germ cell tumors. Am J Epidemiol 165(4):355–363

    Article  PubMed  Google Scholar 

  32. Purdue MP, Sakoda LC, Graubard BI, Welch R, Chanock SJ, Sesterhenn IA et al (2007) A case–control investigation of immune function gene polymorphisms and risk of testicular germ cell tumors. Cancer Epidemiol Biomarkers Prev 16(1):77–83

    Article  PubMed  CAS  Google Scholar 

  33. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA (2004) Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 74(1):106–120

    Article  PubMed  CAS  Google Scholar 

  34. A haplotype map of the human genome. Nature 2005;437(7063):1299–1320

  35. Packer BR, Yeager M, Burdett L, Welch R, Beerman M, Qi L et al (2006) SNP500Cancer: a public resource for sequence validation, assay development, and frequency analysis for genetic variation in candidate genes. Nucleic Acids Res 34(Database issue):D617–D621

    Article  PubMed  CAS  Google Scholar 

  36. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68(4):978–989

    Article  PubMed  CAS  Google Scholar 

  37. BenjaminiYaH Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Series B (Stat Method) 57(1):289–300

    Google Scholar 

  38. Henderson BE, Benton B, Jing J, Yu MC, Pike MC (1979) Risk factors for cancer of the testis in young men. Int J Cancer 23(5):598–602

    Article  PubMed  CAS  Google Scholar 

  39. Sharpe RM, Skakkebaek NE (1993) Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet 341(8857):1392–1395

    Article  PubMed  CAS  Google Scholar 

  40. Sharpe RM (2001) Hormones and testis development and the possible adverse effects of environmental chemicals. Toxicol Lett 120(1–3):221–232

    Article  PubMed  CAS  Google Scholar 

  41. Hsieh CC, Lambe M, Trichopoulos D, Ekbom A, Akre O, Adami HO (2002) Early life exposure to oestrogen and testicular cancer risk: evidence against an aetiological hypothesis. Br J Cancer 86(8):1363–1364

    Article  PubMed  CAS  Google Scholar 

  42. McGlynn KA, Graubard BI, Nam JM, Stanczyk FZ, Longnecker MP, Klebanoff MA (2005) Maternal hormone levels and risk of cryptorchism among populations at high and low risk of testicular germ cell tumors. Cancer Epidemiol Biomarkers Prev 14(7):1732–1737

    Article  PubMed  CAS  Google Scholar 

  43. McLachlan JA, Newbold RR, Li S, Negishi M. Are estrogens carcinogenic during development of the testes? Apmis 1998;106(1):240–242; discussion 243–244

  44. Shankar S, Davies S, Giller R, Krailo M, Davis M, Gardner K et al (2006) In utero exposure to female hormones and germ cell tumors in children. Cancer 106(5):1169–1177

    Article  PubMed  Google Scholar 

  45. Sharpe RM (2003) The 'oestrogen hypothesis'—where do we stand now? Int J Androl 26(1):2–15

    Article  PubMed  CAS  Google Scholar 

  46. Starr JR, Chen C, Doody DR, Hsu L, Ricks S, Weiss NS et al (2005) Risk of testicular germ cell cancer in relation to variation in maternal and offspring cytochrome p450 genes involved in catechol estrogen metabolism. Cancer Epidemiol Biomarkers Prev 14(9):2183–2190

    Article  PubMed  CAS  Google Scholar 

  47. Ueda R, Iketaki H, Nagata K, Kimura S, Gonzalez FJ, Kusano K et al (2006) A common regulatory region functions bidirectionally in transcriptional activation of the human CYP1A1 and CYP1A2 genes. Mol Pharmacol 69(6):1924–1930

    Article  PubMed  CAS  Google Scholar 

  48. Kurahashi N, Sata F, Kasai S, Shibata T, Moriya K, Yamada H et al (2005) Maternal genetic polymorphisms in CYP1A1, GSTM1 and GSTT1 and the risk of hypospadias. Mol Hum Reprod 11(2):93–98

    Article  PubMed  CAS  Google Scholar 

  49. Fritsche E, Schuppe HC, Dohr O, Ruzicka T, Gleichmann E, Abel J (1998) Increased frequencies of cytochrome P4501A1 polymorphisms in infertile men. Andrologia 30(3):125–128

    PubMed  CAS  Google Scholar 

  50. Duffy JE, Li Y, Zelikoff JT (2005) PCB-induced hepatic Cyp1A induction is associated with innate immune dysfunction in a feral teleost fish. Bull Environ Contam Toxicol 74(1):107–113

    Article  PubMed  CAS  Google Scholar 

  51. Silkworth JB, Koganti A, Illouz K, Possolo A, Zhao M, Hamilton SB (2005) Comparison of TCDD and PCB CYP1A induction sensitivities in fresh hepatocytes from human donors, sprague-dawley rats, and rhesus monkeys and HepG2 cells. Toxicol Sci 87(2):508–519

    Article  PubMed  CAS  Google Scholar 

  52. Laden F, Ishibe N, Hankinson SE, Wolff MS, Gertig DM, Hunter DJ et al (2002) Polychlorinated biphenyls, cytochrome P450 1A1, and breast cancer risk in the Nurses' Health Study. Cancer Epidemiol Biomarkers Prev 11(12):1560–1565

    PubMed  CAS  Google Scholar 

  53. Li Y, Millikan RC, Bell DA, Cui L, Tse CK, Newman B et al (2005) Polychlorinated biphenyls, cytochrome P450 1A1 (CYP1A1) polymorphisms, and breast cancer risk among African-American women and white women in North Carolina: a population-based case–control study. Breast Cancer Res 7(1):R12–R18

    Article  PubMed  CAS  Google Scholar 

  54. Moysich KB, Shields PG, Freudenheim JL, Schisterman EF, Vena JE, Kostyniak P et al (1999) Polychlorinated biphenyls, cytochrome P4501A1 polymorphism, and postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev 8(1):41–44

    PubMed  CAS  Google Scholar 

  55. Zhang Y, Wise JP, Holford TR, Xie H, Boyle P, Zahm SH et al (2004) Serum polychlorinated biphenyls, cytochrome P-450 1A1 polymorphisms, and risk of breast cancer in Connecticut women. Am J Epidemiol 160(12):1177–1183

    PubMed  Google Scholar 

  56. Weir HK, Marrett LD, Moravan V (1999) Trends in the incidence of testicular germ cell cancer in Ontario by histologic subgroup, 1964–1996. Cmaj 160(2):201–205

    PubMed  CAS  Google Scholar 

  57. Lind GE, Skotheim RI, Lothe RA (2007) The epigenome of testicular germ cell tumors. Apmis 115(10):1147–1160

    Article  PubMed  CAS  Google Scholar 

  58. Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308(5727):1466–1469

    Article  PubMed  CAS  Google Scholar 

  59. Mitrunen K, Hirvonen A (2003) Molecular epidemiology of sporadic breast cancer. The role of polymorphic genes involved in oestrogen biosynthesis and metabolism. Mutat Res 544(1):9–41

    Article  PubMed  CAS  Google Scholar 

  60. Collins LL, Lee HJ, Chen YT, Chang M, Hsu HY, Yeh S et al (2003) The androgen receptor in spermatogenesis. Cytogenet Genome Res 103(3–4):299–301

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Emily Steplowski of IMS for her contributions to data management and Sabah Quraishi for her contributions to data analysis. In addition, Jonine Figueroa would like to thank Victoria Chia and Michael Cook for discussions about data presentation and the NCI Cancer Prevention Fellowship program for their support. The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonine D. Figueroa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 823 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueroa, J.D., Sakoda, L.C., Graubard, B.I. et al. Genetic variation in hormone metabolizing genes and risk of testicular germ cell tumors. Cancer Causes Control 19, 917–929 (2008). https://doi.org/10.1007/s10552-008-9153-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-008-9153-6

Keywords

Navigation