Skip to main content

Advertisement

Log in

Gene expression in triple-negative breast cancer in relation to survival

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

The identification of biomarkers related to the prognosis of triple-negative breast cancer (TNBC) is critically important for improved understanding of the biology that drives TNBC progression.

Methods

We evaluated gene expression in total RNA isolated from formalin-fixed paraffin-embedded tumor samples using the NanoString nCounter assay for 469 TNBC cases from the Shanghai Breast Cancer Survival Study. We used Cox regression to quantify Hazard Ratios (HR) and corresponding confidence intervals (CI) for overall survival (OS) and disease-free survival (DFS) in models that included adjustment for breast cancer intrinsic subtype. Of 302 genes in our discovery analysis, 22 were further evaluated in relation to OS among 134 TNBC cases from the Nashville Breast Health Study and the Southern Community Cohort Study; 16 genes were further evaluated in relation to DFS in 335 TNBC cases from four gene expression omnibus datasets. Fixed-effect meta-analysis was used to combine results across data sources.

Results

Twofold higher expression of EOMES (HR 0.90, 95% CI 0.83–0.97), RASGRP1 (HR 0.89, 95% CI 0.82–0.97), and SOD2 (HR 0.80, 95% CI 0.66–0.96) was associated with better OS. Twofold higher expression of EOMES (HR 0.89, 95% CI 0.81–0.97) and RASGRP1 (HR 0.87, 95% CI 0.81–0.95) was also associated with better DFS. On the contrary, a doubling of FA2H (HR 1.14, 95% CI 1.06–1.22) and GSPT1 (HR 1.33, 95% CI 1.14–1.55) expression was associated with shorter DFS.

Conclusions

We identified five genes (EOMES, FA2H, GSPT1, RASGRP1, and SOD2) that may serve as potential prognostic biomarkers and/or therapeutic targets for TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data availability

Summary statistics from SBCSS, SCCS, and NBHS data analysis will be provided upon request; GEO data are publically available through the NCBI (https://www.ncbi.nlm.nih.gov/geo/).

References

  1. Sharma P (2016) Biology and Management of Patients With Triple-Negative Breast Cancer. Oncologist 21:1050–1062

    Article  PubMed  PubMed Central  Google Scholar 

  2. Palma G, Frasci G, Chirico A, Esposito E, Siani C, Saturnino C et al (2015) Triple negative breast cancer: looking for the missing link between biology and treatments. Oncotarget 6:26560–26574

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hurvitz S, Mead M (2016) Triple-negative breast cancer: advancements in characterization and treatment approach. Curr Opin Obstet Gynecol 28:59–69

    PubMed  Google Scholar 

  4. Kumar P, Aggarwal R (2016) An overview of triple-negative breast cancer. Arch Gynecol Obstet 293:247–269

    Article  PubMed  CAS  Google Scholar 

  5. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108

    Article  PubMed  Google Scholar 

  6. DeSantis CE, Fedewa SA, Goding Sauer A, Kramer JL, Smith RA, Jemal A (2016) Breast cancer statistics, 2015: convergence of incidence rates between black and white women. CA Cancer J Clin 66:31–42

    Article  PubMed  Google Scholar 

  7. Wang C, Kar S, Lai X, Cai W, Arfuso F, Sethi G et al (2018) Triple negative breast cancer in Asia: an insider’s view. Cancer Treat Rev 62:29–38

    Article  PubMed  Google Scholar 

  8. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  9. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    Article  Google Scholar 

  10. Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27:1160–1167

    Article  PubMed  PubMed Central  Google Scholar 

  11. Baglia ML, Cai Q, Zheng Y, Wu J, Su Y, Ye F et al (2014) Dual specificity phosphatase 4 gene expression in association with triple-negative breast cancer outcome. Breast Cancer Res Treat 148:211–220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kim JY, Jung HH, Do I-G, Bae S, Lee SK, Kim SW et al (2016) Prognostic value of ERBB4 expression in patients with triple negative breast cancer. BMC Cancer 16:138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Park YH, Jung HH, Do I-G, Cho EY, Sohn I, Jung SH et al (2015) A seven-gene signature can predict distant recurrence in patients with triple-negative breast cancers who receive adjuvant chemotherapy following surgery. Int J Cancer 136:1976–1984

    Article  PubMed  CAS  Google Scholar 

  14. Lee HJ, Lee JJ, Song IH, Park IA, Kang J, Yu JH et al (2015) Prognostic and predictive value of NanoString-based immune-related gene signatures in a neoadjuvant setting of triple-negative breast cancer: relationship to tumor-infiltrating lymphocytes. Breast Cancer Res Treat 151:619–627

    Article  PubMed  CAS  Google Scholar 

  15. Shu XO, Zheng Y, Cai H, Gu K, Chen Z, Zheng W et al (2009) Soy food intake and breast cancer survival. JAMA 302:2437–2443

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu Y, Baglia M, Zheng Y, Blot W, Bao P-P, Cai H et al (2015) ALDH1A1 mRNA expression in association with prognosis of triple-negative breast cancer. Oncotarget 6:41360–41369

    PubMed  PubMed Central  Google Scholar 

  17. Cui Y, Deming-Halverson SL, Beeghly-Fadiel A, Lipworth L, Shrubsole MJ, Fair AM et al (2014) Interactions of hormone replacement therapy, body weight, and bilateral oophorectomy in breast cancer risk. Clin Cancer Res 20:1169–1178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Signorello LB, Hargreaves MK, Blot WJ (2010) The Southern Community Cohort Study: investigating health disparities. J Health Care Poor Underserved 21:26–37

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sabatier R, Finetti P, Cervera N, Lambaudie E, Esterni B, Mamessier E et al (2011) A gene expression signature identifies two prognostic subgroups of basal breast cancer. Breast Cancer Res Treat 126:407–420

    Article  PubMed  CAS  Google Scholar 

  20. Hatzis C, Pusztai L, Valero V, Booser DJ, Esserman L, Lluch A et al (2011) A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA 305:1873–1881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hoadley KA, Weigman VJ, Fan C, Sawyer LR, He X, Troester MA et al (2007) EGFR associated expression profiles vary with breast tumor subtype. BMC Genom 8:258

    Article  CAS  Google Scholar 

  22. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8:R76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Hu Z, Fan C, Livasy C, He X, Oh DS, Ewend MG et al (2009) A compact VEGF signature associated with distant metastases and poor outcomes. BMC Med 7:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Yasuda S, Stevens RL, Terada T, Takeda M, Hashimoto T, Fukae J et al (2007) Defective expression of Ras guanyl nucleotide-releasing protein 1 in a subset of patients with systemic lupus erythematosus. J Immunol 179:4890–4900

    Article  PubMed  CAS  Google Scholar 

  25. Qu HQ, Grant SFA, Bradfield JP, Kim C, Frackelton E, Hakonarson H et al (2009) Association of RASGRP1 with type 1 diabetes is revealed by combined follow-up of two genome-wide studies. J Med Genet 46:553–554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Li H, Gan W, Lu L, Dong X, Han X, Hu C et al (2013) A genome-wide association study identifies GRK5 and RASGRP1 as type 2 diabetes loci in Chinese Hans. Diabetes 62:291–298

    Article  PubMed  CAS  Google Scholar 

  27. Depeille P, Henricks LM, van de Ven RAH, Lemmens E, Wang CY, Matli M et al (2015) RasGRP1 opposes proliferative EGFR-SOS1-Ras signals and restricts intestinal epithelial cell growth. Nat Cell Biol 17:804–815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Alderson NL, Hama H (2009) Fatty acid 2-hydroxylase regulates cAMP-induced cell cycle exit in D6P2T schwannoma cells. J Lipid Res 50:1203–1208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Herrero AB, Astudillo AM, Balboa MA, Cuevas C, Balsinde J, Moreno S (2008) Levels of SCS7/FA2H-mediated fatty acid 2-hydroxylation determine the sensitivity of cells to antitumor PM02734. Cancer Res 68:9779–9787

    Article  PubMed  CAS  Google Scholar 

  30. Salazar R, Jones RJ, Oaknin A, Crawford D, Cuadra C, Hopkins C et al (2012) A phase I and pharmacokinetic study of elisidepsin (PM02734) in patients with advanced solid tumors. Cancer Chemother Pharmacol 70:673–681

    Article  PubMed  CAS  Google Scholar 

  31. Goel S, Viteri S, Morán T, Coronado C, Dios JLI, Miguel-Lillo B et al (2016) Phase I, dose-escalating study of elisidepsin (Irvalec(®)), a plasma membrane-disrupting marine antitumor agent, in combination with erlotinib in patients with advanced malignant solid tumors. Invest New Drugs 34:75–83

    Article  PubMed  CAS  Google Scholar 

  32. Xiao R, Li C, Chai B (2015) miRNA-144 suppresses proliferation and migration of colorectal cancer cells through GSPT1. Biomed Pharmacother 74:138–144

    Article  PubMed  CAS  Google Scholar 

  33. Malta-Vacas J, Chauvin C, Gonçalves L, Nazaré A, Carvalho C, Monteiro C et al (2009) eRF3a/GSPT1 12-GGC allele increases the susceptibility for breast cancer development. Oncol Rep 21:1551–1558

    PubMed  CAS  Google Scholar 

  34. Miri M, Hemati S, Safari F, Tavassoli M (2012) GGCn polymorphism of eRF3a/GSPT1 gene and breast cancer susceptibility. Med Oncol 29:1581–1585

    Article  PubMed  CAS  Google Scholar 

  35. Malta-Vacas J, Ferreira P, Monteiro C, Brito M (2009) Differential expression of GSPT1 GGCn alleles in cancer. Cancer Genet Cytogenet 195:132–142

    Article  PubMed  CAS  Google Scholar 

  36. Probst S, Arnold SJ (2017) Eomesodermin-at dawn of cell fate decisions during early embryogenesis. Curr Top Dev Biol 122:93–115

    Article  PubMed  CAS  Google Scholar 

  37. Pearce EL, Mullen AC, Martins GA, Krawczyk CM, Hutchins AS, Zediak VP et al (2003) Control of effector CD8 + T cell function by the transcription factor eomesodermin. Science 302:1041–1043

    Article  PubMed  CAS  Google Scholar 

  38. Zhu Y, Ju S, Chen E, Dai S, Li C, Morel P et al (2010) T-bet and eomesodermin are required for T cell-mediated antitumor immune responses. J Immunol 185:3174–3183

    Article  PubMed  CAS  Google Scholar 

  39. Chang H, Jeung H-C, Jung JJ, Kim TS, Rha SY, Chung HC (2011) Identification of genes associated with chemosensitivity to SAHA/taxane combination treatment in taxane-resistant breast cancer cells. Breast Cancer Res Treat 125:55–63

    Article  PubMed  CAS  Google Scholar 

  40. Dielmann A, Letsch A, Nonnenmacher A, Miller K, Keilholz U, Busse A (2016) Favorable prognostic influence of T-box transcription factor eomesodermin in metastatic renal cell cancer patients. Cancer Immunol Immunother 65:181–192

    Article  PubMed  CAS  Google Scholar 

  41. Wang R, Kang Y, Löhr CV, Fischer KA, Bradford CS, Johnson G et al (2016) Reciprocal regulation of BMF and BIRC5 (Survivin) linked to Eomes overexpression in colorectal cancer. Cancer Lett 381:341–348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kamarajugadda S, Cai Q, Chen H, Nayak S, Zhu J, He M et al (2013) Manganese superoxide dismutase promotes anoikis resistance and tumor metastasis. Cell Death Dis 4:e504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sutton A, Imbert A, Igoudjil A, Descatoire V, Cazanave S, Pessayre D et al (2005) The manganese superoxide dismutase Ala16Val dimorphism modulates both mitochondrial import and mRNA stability. Pharmacogenet Genom 15:311–319

    Article  CAS  Google Scholar 

  44. Wang C, Liu Y, Zhou J, Ye L, Chen N, Zhu M et al (2017) There is no relationship between SOD2 Val-16Ala polymorphism and breast cancer risk or survival. Mol Clin Oncol 7:579–590

    Article  PubMed  PubMed Central  Google Scholar 

  45. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2005) REporting recommendations for tumour MARKer prognostic studies (REMARK). Br J Cancer 93:387–391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Huang X, Dugo M, Callari M, Sandri M, De Cecco L, Valeri B et al (2015) Molecular portrait of breast cancer in China reveals comprehensive transcriptomic likeness to Caucasian breast cancer and low prevalence of luminal A subtype. Cancer Med 4:1016–1030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Department of Defense Breast Cancer Research Program (DAMD 17-02-1-0607) and the National Institutes of Health (R01CA118229; P50CA098131). RNA sample preparation was conducted at the Survey and Biospecimen Shared Resources facility that is supported in part by the Vanderbilt-Ingram Cancer Center (P30 CA068485). The authors thank participants and research team members of the Shanghai Breast Cancer Survival Study for their dedication to the study; Ms. Regina Courtney and Dr. Bo Huang for their help with RNA sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Beeghly-Fadiel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All participants of the SBCSS, SCCS, and NBHS provided informed consent; institutional approval was garnered from all appropriate review boards, and all experiments were conducted in compliance with relevant federal and state laws.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 41 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Beeghly-Fadiel, A., Cai, Q. et al. Gene expression in triple-negative breast cancer in relation to survival. Breast Cancer Res Treat 171, 199–207 (2018). https://doi.org/10.1007/s10549-018-4816-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-018-4816-9

Keywords

Navigation