Skip to main content

Advertisement

Log in

Serial immunological parameters in a phase II trial of exemestane and low-dose oral cyclophosphamide in advanced hormone receptor-positive breast cancer

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Background and purpose

Resistance to endocrine therapies in hormone receptor (HR)-positive breast cancer is a significant challenge. Prior studies have shown that low-dose oral cyclophosphamide can transiently deplete regulatory T cells (Tregs) and improve anti-tumor immunity. We investigated the combination of exemestane with cyclophosphamide in patients with advanced HR-positive breast cancer and assessed changes in circulating immune cell subsets.

Methods

This was a single-arm phase II trial of exemestane with cyclophosphamide in patients with metastatic HR-positive/HER2-negative breast cancer who had progressed on prior endocrine therapy (ClinicalTrials.gov: NCT01963481). Primary endpoint was progression-free survival (PFS) at 3 months (RECIST 1.1). Secondary objectives included median PFS, objective response rate, duration of response, and safety. Circulating Tregs (FOXP3+Helios+) and other immune cell subsets were monitored during treatment and compared with healthy controls.

Results

Twenty-three patients were enrolled. Treatment was well tolerated, without grade 4/5 toxicities. Objective responses were seen in 6/23 patients (26.1%; 95% CI 10.2–48.4%) and were durable (median 11.6 months). Three-month PFS rate was 50.1% (95% CI 33.0–76.0%); median PFS was 4.23 months (95% CI 2.8–11.7). No treatment-related decrease in Tregs was observed. However, elevated baseline levels of Naïve Tregs [greater than 2.5 (the median of the naïve Tregs)] were associated with relative risk of disease progression or death [hazard ratio 11.46 (95% CI 2.32–56.5)]. In addition, the baseline levels of Naïve Tregs (adj-p = 0.04), Memory Tregs (adj-p = 0.003), CD4 + Central Memory T cells (adj-p = 0.0004), PD-1 + CD4 + Central Memory T cells (adj-p = 0.008), and PD-1 + CD4 + Effector Memory T cells (adj-p = 0.009) were significantly greater in the patients than in the healthy controls; the baseline levels of  %CD4 + Naïve T cells (adj-p = 0.0004) were significantly lower in patients compared with healthy controls (n = 40).

Conclusion

Treg depletion was not observed with low-dose cyclophosphamide when assessed by the specific marker FOXP3 + Helios +; however, baseline naïve Tregs were associated with 3-month PFS. Exemestane/cyclophosphamide combination had favorable safety profile with evidence of clinical activity in heavily pretreated patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rose C, Vtoraya O, Pluzanska A et al (2003) An open randomised trial of second-line endocrine therapy in advanced breast cancer. Comparison of the aromatase inhibitors letrozole and anastrozole. Eur J Cancer 39:2318–2327

    Article  CAS  PubMed  Google Scholar 

  2. Chia S, Gradishar W, Mauriac L et al (2008) Double-blind, randomized placebo controlled trial of fulvestrant compared with exemestane after prior nonsteroidal aromatase inhibitor therapy in postmenopausal women with hormone receptor-positive, advanced breast cancer: results from EFECT. J Clin Oncol 26:1664–1670

    Article  CAS  PubMed  Google Scholar 

  3. Di Leo A, Jerusalem G, Petruzelka L et al (2010) Results of the CONFIRM phase III trial comparing fulvestrant 250 mg with fulvestrant 500 mg in postmenopausal women with estrogen receptor-positive advanced breast cancer. J Clin Oncol 28:4594–4600

    Article  PubMed  Google Scholar 

  4. Di Leo A, Jerusalem G, Petruzelka L et al (2014) Final overall survival: fulvestrant 500 mg versus 250 mg in the randomized CONFIRM trial. J Natl Cancer Inst 106:337

    Article  Google Scholar 

  5. Thurlimann B, Robertson JF, Nabholtz JM, Buzdar A, Bonneterre J, Arimidex Study G (2003) Efficacy of tamoxifen following anastrozole (‘Arimidex’) compared with anastrozole following tamoxifen as first-line treatment for advanced breast cancer in postmenopausal women. Eur J Cancer 39:2310–2317

    Article  Google Scholar 

  6. Baselga J, Campone M, Piccart M et al (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366:520–529

    Article  CAS  PubMed  Google Scholar 

  7. Yardley DA, Noguchi S, Pritchard KI et al (2013) Everolimus plus exemestane in postmenopausal patients with HR(+) breast cancer: BOLERO-2 final progression-free survival analysis. Adv Ther 30:870–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Topalian SL, Weiner GJ, Pardoll DM (2011) Cancer immunotherapy comes of age. J Clin Oncol 29:4828–4836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Drake CG, Jaffee E, Pardoll DM (2006) Mechanisms of immune evasion by tumors. Adv Immunol 90:51–81

    Article  CAS  PubMed  Google Scholar 

  10. Ghiringhelli F, Menard C, Terme M et al (2005) CD4 + CD25 + regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 202:1075–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu Z, Kim JH, Falo LD Jr, You Z (2009) Tumor regulatory T cells potently abrogate antitumor immunity. J Immunol 182:6160–6167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nanda R, Chow LQ, Dees EC et al (2016) Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 Study. J Clin Oncol 34:2460–2467

    Article  CAS  PubMed  Google Scholar 

  13. Rugo H, Delord, J-P, Im S-A, et al. (2015) Preliminary efficacy and safety of pembrolizumab (MK-3475) in patients with PD-L1-positive, estrogen receptor-positive (ER+)/HER2-negative advanced breast cancer enrolled in KEYNOTE-028. San Antonio Breast Cancer Symposium (SABCS), Abstract S5-07

  14. Adams S, Diamond, JR, Hamilton, EP, et al. (2016) Phase Ib trial of atezolizumab in combination with nab-paclitaxel in patients with metastatic triple-negative breast cancer (mTNBC). American Society of Clinical Oncology (ASCO) Annual Meeting, Abstract 1009

  15. Adams S LS, Toppmeyer D, et al. (2017) Phase 2 study of pembrolizumab as first-line therapy for PD-L1-positive metastatic triple-negative breast cancer (mTNBC): preliminary data from KEYNOTE-086 cohort. J Clin Oncol 35 (Abstract 1088)

  16. Ghiringhelli F, Larmonier N, Schmitt E et al (2004) CD4 + CD25 + regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344

    Article  CAS  PubMed  Google Scholar 

  17. Woo EY, Chu CS, Goletz TJ et al (2001) Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61:4766–4772

    CAS  PubMed  Google Scholar 

  18. Liyanage UK, Moore TT, Joo HG et al (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756–2761

    Article  CAS  PubMed  Google Scholar 

  19. Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  CAS  PubMed  Google Scholar 

  20. Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H (2005) Inhibition of CD4(+)25 + T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105:2862–2868

    Article  CAS  PubMed  Google Scholar 

  21. Berd D, Mastrangelo MJ (1987) Effect of low dose cyclophosphamide on the immune system of cancer patients: reduction of T-suppressor function without depletion of the CD8+ subset. Cancer Res 47:3317–3321

    CAS  PubMed  Google Scholar 

  22. Ghiringhelli F, Menard C, Puig PE et al (2007) Metronomic cyclophosphamide regimen selectively depletes CD4 + CD25 + regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–648

    Article  CAS  PubMed  Google Scholar 

  23. Ge Y, Domschke C, Stoiber N et al (2012) Metronomic cyclophosphamide treatment in metastasized breast cancer patients: immunological effects and clinical outcome. Cancer Immunol Immunother 61:353–362

    Article  CAS  PubMed  Google Scholar 

  24. Dewan MZ, Vanpouille-Box C, Kawashima N et al (2012) Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer. Clin Cancer Res 18:6668–6678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Prieto GA, Rosenstein Y (2006) Oestradiol potentiates the suppressive function of human CD4 CD25 regulatory T cells by promoting their proliferation. Immunology 118:58–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Polanczyk MJ, Hopke C, Vandenbark AA, Offner H (2006) Estrogen-mediated immunomodulation involves reduced activation of effector T cells, potentiation of Treg cells, and enhanced expression of the PD-1 costimulatory pathway. J Neurosci Res 84:370–378

    Article  CAS  PubMed  Google Scholar 

  27. Benjamini YHY (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc 57:289–300

    Google Scholar 

  28. Thome JJ, Grinshpun B, Kumar BV et al (2016) Longterm maintenance of human naive T cells through in situ homeostasis in lymphoid tissue sites. Sci Immunol. https://doi.org/10.1126/sciimmunol.aah6506

    Google Scholar 

  29. Cristofanilli M, Turner NC, Bondarenko I et al (2016) Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol 17:425–439

    Article  CAS  PubMed  Google Scholar 

  30. Baecher-Allan C, Wolf E, Hafler DA (2005) Functional analysis of highly defined, FACS-isolated populations of human regulatory CD4 + CD25 + T cells. Clin Immunol 115:10–18

    Article  CAS  PubMed  Google Scholar 

  31. Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8:523–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B (2003) Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 9:606–612

    PubMed  Google Scholar 

  33. Bates GJ, Fox SB, Han C et al (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24:5373–5380

    Article  PubMed  Google Scholar 

  34. Walter S, Weinschenk T, Stenzl A et al (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18:1254–1261

    Article  CAS  PubMed  Google Scholar 

  35. Chen G, Gupta R, Petrik S et al (2014) A feasibility study of cyclophosphamide, trastuzumab, and an allogeneic GM-CSF-secreting breast tumor vaccine for HER2+ metastatic breast cancer. Cancer Immunol Res 2:949–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Greten TF, Ormandy LA, Fikuart A et al (2010) Low-dose cyclophosphamide treatment impairs regulatory T cells and unmasks AFP-specific CD4 + T-cell responses in patients with advanced HCC. J Immunother 33:211–218

    Article  CAS  PubMed  Google Scholar 

  37. Lutz ER, Wu AA, Bigelow E et al (2014) Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol Res 2:616–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Audia S, Nicolas A, Cathelin D et al (2007) Increase of CD4 + CD25 + regulatory T cells in the peripheral blood of patients with metastatic carcinoma: a phase I clinical trial using cyclophosphamide and immunotherapy to eliminate CD4 + CD25 + T lymphocytes. Clin Exp Immunol 150:523–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miyara M, Yoshioka Y, Kitoh A et al (2009) Functional delineation and differentiation dynamics of human CD4 + T cells expressing the FoxP3 transcription factor. Immunity 30:899–911

    Article  CAS  PubMed  Google Scholar 

  40. Tran DQ, Ramsey H, Shevach EM (2007) Induction of FOXP3 expression in naive human CD4 + FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 110:2983–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang R, Kozhaya L, Mercer F, Khaitan A, Fujii H, Unutmaz D (2009) Expression of GARP selectively identifies activated human FOXP3 + regulatory T cells. Proc Natl Acad Sci USA 106:13439–13444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou AX, Kozhaya L, Fujii H, Unutmaz D (2013) GARP-TGF-beta complexes negatively regulate regulatory T cell development and maintenance of peripheral CD4 + T cells in vivo. J Immunol 190:5057–5064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thornton AM, Korty PE, Tran DQ et al (2010) Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3 + T regulatory cells. J Immunol 184:3433–3441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Himmel ME, MacDonald KG, Garcia RV, Steiner TS, Levings MK (2013) Helios + and Helios-cells coexist within the natural FOXP3 + T regulatory cell subset in humans. J Immunol 190:2001–2008

    Article  CAS  PubMed  Google Scholar 

  45. Mercer F, Khaitan A, Kozhaya L, Aberg JA, Unutmaz D (2014) Differentiation of IL-17-producing effector and regulatory human T cells from lineage-committed naive precursors. J Immunol 193:1047–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vetizou M, Pitt JM, Daillere R et al (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350:1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Beckhove P, Feuerer M, Dolenc M et al (2004) Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors. J Clin Investig 114:67–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Klebanoff CA, Gattinoni L, Torabi-Parizi P et al (2005) Central memory self/tumor-reactive CD8 + T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA 102:9571–9576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Meng Q, Liu Z, Rangelova E et al (2016) Expansion of tumor-reactive T cells from patients with pancreatic cancer. J Immunother 39:81–89

    Article  CAS  PubMed  Google Scholar 

  50. Liu Z, Meng Q, Bartek J Jr et al (2017) Tumor-infiltrating lymphocytes (TILs) from patients with glioma. Oncoimmunology 6:e1252894

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the patients who participated in this study and their families, the NYU Clinical Trials Office, and grant support through the Perlmutter Cancer Center (NYUCI Core Grant P30CA016087) (SA, XL, JDG). We also thank Juan Laifalle, PhD, for providing critical reading and guidance for the manuscript.

Funding

Grant support was provided through the Perlmutter Cancer Center (NYUCI Core Grant P30CA016087) (for SA, XL, JDG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Adams.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwa, M., Li, X., Novik, Y. et al. Serial immunological parameters in a phase II trial of exemestane and low-dose oral cyclophosphamide in advanced hormone receptor-positive breast cancer. Breast Cancer Res Treat 168, 57–67 (2018). https://doi.org/10.1007/s10549-017-4570-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-017-4570-4

Keywords

Navigation