Skip to main content

Advertisement

Log in

Incremental increase in VEGFR1+ hematopoietic progenitor cells and VEGFR2+ endothelial progenitor cells predicts relapse and lack of tumor response in breast cancer patients

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Animal models have demonstrated the critical role of bone marrow-derived VEGFR1+ hematopoietic progenitor cells (HPCs) and VEGFR2+ endothelial progenitor cells (EPCs) in metastatic progression. We explored whether these cells could predict relapse and response in breast cancer (BC) patients. One hundred and thirty-two patients with stages 1–4 BC were enrolled on 2 studies. Circulating CD45+/CD34+/VEGFR1+ HPCs and CD45dim/CD133+/VEGFR2+ EPCs were assessed from peripheral blood mononuclear cells using flow cytometry. Changes in HPCs and EPCs were analyzed in (1) patients without overt disease that relapsed and (2) metastatic patients according to response by RECIST. At study entry, 102 patients were without evidence of disease and 30 patients had metastatic BC. Seven patients without evidence of BC by exam, labs, and imaging developed recurrence while on study. Median HPC/ml (range) increased from 645.8 (23.5–1,914) to 2,899 (1,176–37,336), P = 0.016, followed by an increase in median EPC/ml from 21.3 (4.7–42.5) to 94.7 (28.2–201.3), P = 0.016, prior to clinical relapse. In metastatic patients with progressive disease, median HPC/ml increased from 1,696 (10–16,470) to 5,124 (374–77,605), P = 0.0009, and median EPC/ml increased from 26 (0–560) to 71 (0–615) prior to progression, P = 0.10. In patients with responding disease, median HPC/ml decreased from 6,147 (912–85,070) to 633 (47–18,065), P = 0.05, and EPC/ml decreased from 46 (0–197) to 23 (0–105), P = 0.41, at response. There were no significant changes in these cells over time in patients with stable disease. Circulating bone marrow-derived HPCs and EPCs predict relapse and disease progression in BC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  2. Brewster AM, Hortobagyi GN, Broglio KR et al (2008) Residual risk of breast cancer recurrence 5 years after adjuvant therapy. J Natl Cancer Inst 100:1179–1183

    Article  PubMed  Google Scholar 

  3. Chiang AC, Massague J (2008) Molecular basis of metastasis. N Engl J Med 359:2814–2823

    Article  PubMed  CAS  Google Scholar 

  4. Saphner T, Tormey DC, Gray R (1996) Annual hazard rates of recurrence for breast cancer after primary therapy. J Clin Oncol 14:2738–2746

    PubMed  CAS  Google Scholar 

  5. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  6. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    Article  PubMed  CAS  Google Scholar 

  7. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423

    Article  PubMed  CAS  Google Scholar 

  8. Cheang MC, van de Rijn M, Nielsen TO (2008) Gene expression profiling of breast cancer. Annu Rev Pathol 3:67–97

    Article  PubMed  CAS  Google Scholar 

  9. Harris L, Fritsche H, Mennel R et al (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25:5287–5312

    Article  PubMed  CAS  Google Scholar 

  10. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  11. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  12. Lyden D, Hattori K, Dias S et al (2001) Impaired recruitment of bone marrow derived endothelial and a hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7:1194–1201

    Article  PubMed  CAS  Google Scholar 

  13. Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    Article  PubMed  CAS  Google Scholar 

  14. Gao D, Nolan DJ, Mellick AS, Bambino K, McDonnell K, Mittal V (2008) Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319:195–198

    Article  PubMed  CAS  Google Scholar 

  15. Fujita K, Nakayama M, Nakai Y et al (2009) Vascular endothelial growth factor receptor 1 expression in pelvic lymph nodes predicts the risk of cancer progression after radical prostatectomy. Cancer Sci 100:1047–1050

    Article  PubMed  CAS  Google Scholar 

  16. Taylor M, Rossler J, Geoerger B et al (2009) High levels of circulating VEGFR2+ Bone marrow-derived progenitor cells correlate with metastatic disease in patients with pediatric solid malignancies. Clin Cancer Res 15:4561–4571

    Article  PubMed  CAS  Google Scholar 

  17. Gao D, Mittal V (2009) The role of bone-marrow-derived cells in tumor growth, metastasis initiation and progression. Trends Mol Med 15:333–343

    Article  PubMed  CAS  Google Scholar 

  18. Roodhart JM, Langenberg MH, Daenen LG, Voest EE (2009) Translating preclinical findings of (endothelial) progenitor cell mobilization into the clinic; from bedside to bench and back. Biochim Biophys Acta 1796:41–49

    PubMed  CAS  Google Scholar 

  19. Dome B, Timar J, Dobos J et al (2006) Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res 66:7341–7347

    Article  PubMed  CAS  Google Scholar 

  20. Furstenberger G, von Moos R, Lucas R et al (2006) Circulating endothelial cells and angiogenic serum factors during neoadjuvant chemotherapy of primary breast cancer. Br J Cancer 94:524–531

    Article  PubMed  CAS  Google Scholar 

  21. Massa M, Rosti V, Ramajoli I et al (2005) Circulating CD34+, CD133+, and vascular endothelial growth factor receptor 2-positive endothelial progenitor cells in myelofibrosis with myeloid metaplasia. J Clin Oncol 23:5688–5695

    Article  PubMed  Google Scholar 

  22. Richter-Ehrenstein C, Rentzsch J, Runkel S, Schneider A, Schonfelder G (2007) Endothelial progenitor cells in breast cancer patients. Breast Cancer Res Treat 106:343–349

    Article  PubMed  Google Scholar 

  23. Naik RP, Jin D, Chuang E et al (2008) Circulating endothelial progenitor cells correlate to stage in patients with invasive breast cancer. Breast Cancer Res Treat 107:133–138

    Article  PubMed  Google Scholar 

  24. Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247

    Article  PubMed  CAS  Google Scholar 

  25. Bertolini F, Shaked Y, Mancuso P, Kerbel RS (2006) The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat Rev Cancer 6:835–845

    Article  PubMed  CAS  Google Scholar 

  26. Mancuso P, Antoniotti P, Quarna J et al (2009) Validation of a standardized method for enumerating circulating endothelial cells and progenitors: flow cytometry and molecular and ultrastructural analyses. Clin Cancer Res 15:267–273

    Article  PubMed  CAS  Google Scholar 

  27. Shaked Y, Henke E, Roodhart JM et al (2008) Rapid chemotherapy-induced acute endothelial progenitor cell mobilization: implications for antiangiogenic drugs as chemosensitizing agents. Cancer Cell 14:263–273

    Article  PubMed  CAS  Google Scholar 

  28. Farace F, Massard C, Borghi E, Bidart JM, Soria JC (2007) Vascular disrupting therapy-induced mobilization of circulating endothelial progenitor cells. Ann Oncol 18:1421–1422

    Article  PubMed  CAS  Google Scholar 

  29. Khan SS, Solomon MA, McCoy JP Jr (2005) Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry. Cytometry B Clin Cytom 64:1–8

    PubMed  Google Scholar 

  30. Bahlmann FH, De Groot K, Spandau JM et al (2004) Erythropoietin regulates endothelial progenitor cells. Blood 103:921–926

    Article  PubMed  CAS  Google Scholar 

  31. Friedrich EB, Werner C, Walenta K, Bohm M, Scheller B (2009) Role of extracellular signal-regulated kinase for endothelial progenitor cell dysfunction in coronary artery disease. Basic Res Cardiol 104:613–620

    Article  PubMed  CAS  Google Scholar 

  32. Goss GD, Arnold A, Shepherd FA et al (2010) Randomized, double-blind trial of carboplatin and paclitaxel with either daily oral cediranib or placebo in advanced non-small-cell lung cancer: NCIC clinical trials group BR24 study. J Clin Oncol 28:49–55

    Article  PubMed  CAS  Google Scholar 

  33. Spratlin JL, Cohen RB, Eadens M et al (2010) Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol 28:780–787

    Article  PubMed  CAS  Google Scholar 

  34. Schwartz JD, Rowinsky EK, Youssoufian H, Pytowski B, Wu Y (2010) Vascular endothelial growth factor receptor-1 in human cancer: concise review and rationale for development of IMC-18F1 (Human antibody targeting vascular endothelial growth factor receptor-1). Cancer 116:1027–1032

    Article  PubMed  CAS  Google Scholar 

  35. Jain S, Ward M, Chuang E, Cigler T, Moore A, Donovan D et al (2010) The effect of tetrathiomolybdate (TM) on circulating endothelial progenitor cells in women at moderate to high risk of breast cancer recurrence. Proc Breast Cancer Symp; abstr 297

Download references

Acknowledgments

We greatly appreciate the generous support from the following: Anne Moore Breast Cancer Research Fund, Stephen and Madeline Anbinder Foundation, Rozaliya Kosmandel Research Fund, Susan G Komen for the Cure, New York Community Trust, and Cancer Research and Treatment Fund. We would also like to thank the Weill Cornell Translational Core Laboratory, Rakhi Naik, MD for her initial contribution to the design of Study 1, and Dingchen Gao and Raul Catena for their valuable comments on this manuscript. Dr. Paul Christos was partially supported by the following grant: Clinical Translational Science Center (CTSC) (UL1-RR024996).

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda T. Vahdat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 228 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, S., Ward, M.M., O’Loughlin, J. et al. Incremental increase in VEGFR1+ hematopoietic progenitor cells and VEGFR2+ endothelial progenitor cells predicts relapse and lack of tumor response in breast cancer patients. Breast Cancer Res Treat 132, 235–242 (2012). https://doi.org/10.1007/s10549-011-1906-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1906-3

Keywords

Navigation