Skip to main content

Advertisement

Log in

Amplification of the prolactin receptor gene in mammary lobular neoplasia

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The identification of lobular carcinoma in situ (LCIS) in a patient’s specimen confers an appreciable increased risk of development of future invasive mammary carcinoma. However, the study of LCIS presents a challenge as it is usually only recognized in fixed specimens. Recent advances in high throughput genomics have made possible comprehensive copy number analysis of lesions such as this. Using array comparative genomic hybridization (aCGH), we characterized eight cases of lobular carcinoma (four invasive and four non-invasive) from microdissected samples of archival specimens and validated our results by quantitative real-time PCR (qRT-PCR). Immunohistochemistry (IHC) was performed on an independent set of 80 in situ ductal (DCIS) and lobular breast lesions to confirm our results. Amplification of the prolactin receptor gene (PRLr) was identified in 4/4 cases of LCIS by aCGH. We confirmed this amplification by qRT-PCR and demonstrated PRLr expression in 29/40 (73%) cases of lobular neoplasia by IHC. Amplification of PRLr was neither detected in 10 cases of DCIS nor in 5 areas of normal breast tissue by qRT-PCR and only 14/40 (35%) cases of DCIS showed PRLr expression by IHC (P = 0.0008). Our study suggests the prolactin receptor gene is a molecular target that may be important in the pathogenesis and progression of lobular neoplasia. Investigation of the status of this gene in cases of DCIS has indicated that it may not be as important in the progression of this type of breast cancer, supporting the view that lobular and ductal carcinomas may evolve along separate pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Marshall LM, Hunter DJ, Connolly JL et al (1997) Risk of breast cancer associated with atypical hyperplasia of lobular and ductal types. Cancer Epidemiol Biomarkers Prev 6:297–301

    PubMed  CAS  Google Scholar 

  2. Page DL, Schuyler PA, Dupont WD et al (2003) Atypical lobular hyperplasia as a unilateral predictor of breast cancer risk: a retrospective cohort study. Lancet 361:125–129

    Article  PubMed  Google Scholar 

  3. Rosen PP, Kosloff C, Lieberman PH et al (1978) Lobular carcinoma in situ of the breast. Detailed analysis of 99 patients with average follow-up of 24 years. Am J Surg Pathol 2:225–251

    Article  PubMed  CAS  Google Scholar 

  4. Garreau JR, Nelson J, Look R et al (2005) Risk counseling and management in patients with lobular carcinoma in situ. Am J Surg 189:610–614; discussion 614–615

    Article  PubMed  Google Scholar 

  5. De Leeuw WJ, Berx G, Vos CB et al (1997) Simultaneous loss of E-cadherin and catenins in invasive lobular breast cancer and lobular carcinoma in situ. J Pathol 183:404–411

    Article  PubMed  Google Scholar 

  6. Berx G, Cleton-Jansen AM, Nollet F et al (1995) E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. EMBO J 14:6107–6115

    PubMed  CAS  Google Scholar 

  7. Mastracci TL, Tjan S, Bane AL et al (2005) E-cadherin alterations in atypical lobular hyperplasia and lobular carcinoma in situ of the breast. Mod Pathol 18:741–751

    Article  PubMed  CAS  Google Scholar 

  8. Vos CB, Cleton-Jansen AM, Berx G et al (1997) E-cadherin inactivation in lobular carcinoma in situ of the breast: an early event in tumorigenesis. Br J Cancer 76:1131–1133

    Article  PubMed  CAS  Google Scholar 

  9. Dabbs DJ, Kaplai M, Chivukula M et al (2007) The spectrum of morphomolecular abnormalities of the E-cadherin/catenin complex in pleomorphic lobular carcinoma of the breast. Appl Immunohistochem Mol Morphol 15:260–266

    Article  PubMed  CAS  Google Scholar 

  10. Mastracci TL, Boulos FI, Andrulis IL et al (2007) Genomics and premalignant breast lesions: clues to the development and progression of lobular breast cancer. Breast Cancer Res 9:215

    Article  PubMed  Google Scholar 

  11. Lu YJ, Osin P, Lakhani SR et al (1998) Comparative genomic hybridization analysis of lobular carcinoma in situ and atypical lobular hyperplasia and potential roles for gains and losses of genetic material in breast neoplasia. Cancer Res 58:4721–4727

    PubMed  CAS  Google Scholar 

  12. Mastracci TL, Shadeo A, Colby SM et al (2006) Genomic alterations in lobular neoplasia: a microarray comparative genomic hybridization signature for early neoplastic proliferationin the breast. Genes Chromosom Cancer 45:1007–1017

    Article  PubMed  CAS  Google Scholar 

  13. Hwang ES, Nyante SJ, Yi Chen Y et al (2004) Clonality of lobular carcinoma in situ and synchronous invasive lobular carcinoma. Cancer 100:2562–2572

    Article  PubMed  Google Scholar 

  14. Etzell JE, Devries S, Chew K et al (2001) Loss of chromosome 16q in lobular carcinoma in situ. Hum Pathol 32:292–296

    Article  PubMed  CAS  Google Scholar 

  15. Weber-Mangal S, Sinn HP, Popp S et al (2003) Breast cancer in young women (< or = 35 years): genomic aberrations detected by comparative genomic hybridization. Int J Cancer 107:583–592

    Article  PubMed  CAS  Google Scholar 

  16. Mohsin SK, O’Connell P, Allred DC et al (2005) Biomarker profile and genetic abnormalities in lobular carcinoma in situ. Breast Cancer Res Treat 90:249–256

    Article  PubMed  Google Scholar 

  17. Simpson PT, Reis-Filho JS, Gale T et al (2005) Molecular evolution of breast cancer. J Pathol 205:248–254

    Article  PubMed  CAS  Google Scholar 

  18. Morandi L, Marucci G, Foschini MP et al (2006) Genetic similarities and differences between lobular in situ neoplasia (LN) and invasive lobular carcinoma of the breast. Virchows Arch 449:14–23

    Article  PubMed  Google Scholar 

  19. Aulmann S, Penzel R, Longerich T et al (2008) Clonality of lobular carcinoma in situ (LCIS) and metachronous invasive breast cancer. Breast Cancer Res Treat 107:331–335

    Article  PubMed  Google Scholar 

  20. Page DL, Dupont WD, Rogers LW et al (1985) Atypical hyperplastic lesions of the female breast. A long-term follow-up study. Cancer 55:2698–2708

    Article  PubMed  CAS  Google Scholar 

  21. Sneige N, Wang J, Baker BA et al (2002) Clinical, histopathologic, and biologic features of pleomorphic lobular (ductal-lobular) carcinoma in situ of the breast: a report of 24 cases. Mod Pathol 15:1044–1050

    Article  PubMed  Google Scholar 

  22. Tavassoli FA, Devilee P (2003) Intraductal proliferative lesions. In: Anonymous pathology and genetics. Tumours of the breast and female genital organs. IARC Press, Lyon

  23. Kuukasjarvi T, Tanner M, Pennanen S et al (1997) Optimizing DOP-PCR for universal amplification of small DNA samples in comparative genomic hybridization. Genes Chromosom Cancer 18:94–101

    Article  PubMed  CAS  Google Scholar 

  24. Huang Q, Schantz SP, Rao PH et al (2000) Improving degenerate oligonucleotide primed PCR-comparative genomic hybridization for analysis of DNA copy number changes in tumors. Genes Chromosom Cancer 28:395–403

    Article  PubMed  CAS  Google Scholar 

  25. Pollack JR, Perou CM, Alizadeh AA et al (1999) Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 23:41–46

    Article  PubMed  CAS  Google Scholar 

  26. Iakovlev VV, Arneson NC, Wong V et al (2008) Genomic differences between pure ductal carcinoma in situ of the breast and that associated with invasive disease: a calibrated aCGH study. Clin Cancer Res 14:4446–4454

    Article  PubMed  CAS  Google Scholar 

  27. Wang C, Iakovlev VV, Wong V et al (2009) Genomic alterations in primary breast cancers compared with their sentinel and more distal lymph node metastases: an aCGH study. Genes Chromosom Cancer 48:1091–1101

    Article  PubMed  CAS  Google Scholar 

  28. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  PubMed  CAS  Google Scholar 

  29. Galsgaard ED, Rasmussen BB, Folkesson CG et al (2009) Re-evaluation of the prolactin receptor expression in human breast cancer. J Endocrinol 201:115–128

    Article  PubMed  CAS  Google Scholar 

  30. Bratthauer GL, Strauss BL, Tavassoli FA (2006) STAT 5a expression in various lesions of the breast. Virchows Arch 448:165–171

    Article  PubMed  CAS  Google Scholar 

  31. Satoh F, Umemura S, Osamura RY (2000) Immunohistochemical analysis of GCDFP-15 and GCDFP-24 in mammary and non-mammary tissue. Breast Cancer 7:49–55

    Article  PubMed  CAS  Google Scholar 

  32. Gill S, Peston D, Vonderhaar BK et al (2001) Expression of prolactin receptors in normal, benign, and malignant breast tissue: an immunohistological study. J Clin Pathol 54:956–960

    Article  PubMed  CAS  Google Scholar 

  33. Dabbs DJ, Bhargava R, Chivukula M (2007) Lobular versus ductal breast neoplasms: the diagnostic utility of p120 catenin. Am J Surg Pathol 31:427–437

    Article  PubMed  Google Scholar 

  34. Wolff AC, Hammond ME, Schwartz JN et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25:118–145

    Article  PubMed  CAS  Google Scholar 

  35. Hammond ME, Hayes DF, Dowsett M et al (2010) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol 28:2784–2795

    Article  PubMed  Google Scholar 

  36. Clevenger CV, Furth PA, Hankinson SE et al (2003) The role of prolactin in mammary carcinoma. Endocr Rev 24:1–27

    Article  PubMed  CAS  Google Scholar 

  37. Ferreira M, Mesquita M, Quaresma M et al (2008) Prolactin receptor expression in gynaecomastia and male breast carcinoma. Histopathology 53:56–61

    Article  PubMed  CAS  Google Scholar 

  38. Mertani HC, Garcia-Caballero T, Lambert A et al (1998) Cellular expression of growth hormone and prolactin receptors in human breast disorders. Int J Cancer 79:202–211

    Article  PubMed  CAS  Google Scholar 

  39. Reynolds C, Montone KT, Powell CM et al (1997) Expression of prolactin and its receptor in human breast carcinoma. Endocrinology 138:5555–5560

    Article  PubMed  CAS  Google Scholar 

  40. Nevalainen MT, Xie J, Bubendorf L et al (2002) Basal activation of transcription factor signal transducer and activator of transcription (Stat5) in nonpregnant mouse and human breast epithelium. Mol Endocrinol 16:1108–1124

    Article  PubMed  CAS  Google Scholar 

  41. Bhargava R, Beriwal S, Dabbs DJ (2007) Mammaglobin vs GCDFP-15: an immunohistologic validation survey for sensitivity and specificity. Am J Clin Pathol 127:103–113

    Article  PubMed  CAS  Google Scholar 

  42. Myal Y, Robinson DB, Iwasiow B et al (1991) The prolactin-inducible protein (PIP/GCDFP-15) gene: cloning, structure and regulation. Mol Cell Endocrinol 80:165–175

    Article  PubMed  CAS  Google Scholar 

  43. Arden KC, Boutin JM, Djiane J et al (1990) The receptors for prolactin and growth hormone are localized in the same region of human chromosome 5. Cytogenet Cell Genet 53:161–165

    Article  PubMed  CAS  Google Scholar 

  44. Loveday RL, Greenman J, Simcox DL et al (2000) Genetic changes in breast cancer detected by comparative genomic hybridisation. Int J Cancer 86:494–500

    Article  PubMed  CAS  Google Scholar 

  45. Reis-Filho JS, Simpson PT, Turner NC et al (2006) FGFR1 emerges as a potential therapeutic target for lobular breast carcinomas. Clin Cancer Res 12:6652–6662

    Article  PubMed  CAS  Google Scholar 

  46. Forozan F, Mahlamaki EH, Monni O et al (2000) Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data. Cancer Res 60:4519–4525

    PubMed  CAS  Google Scholar 

  47. Peirce SK, Chen WY, Chen WY (2001) Quantification of prolactin receptor mRNA in multiple human tissues and cancer cell lines by real time RT-PCR. J Endocrinol 171:R1–R4

    Article  PubMed  CAS  Google Scholar 

  48. Swaminathan G, Varghese B, Fuchs SY (2008) Regulation of prolactin receptor levels and activity in breast cancer. J Mammary Gland Biol Neoplasia 13:81–91

    Article  PubMed  CAS  Google Scholar 

  49. Das R, Vonderhaar BK (1996) Activation of raf-1, MEK, and MAP kinase in prolactin responsive mammary cells. Breast Cancer Res Treat 40:141–149

    Article  PubMed  CAS  Google Scholar 

  50. Perks CM, Keith AJ, Goodhew KL et al (2004) Prolactin acts as a potent survival factor for human breast cancer cell lines. Br J Cancer 91:305–311

    PubMed  CAS  Google Scholar 

  51. Oakes SR, Robertson FG, Kench JG et al (2007) Loss of mammary epithelial prolactin receptor delays tumor formation by reducing cell proliferation in low-grade preinvasive lesions. Oncogene 26:543–553

    Article  PubMed  CAS  Google Scholar 

  52. Rose-Hellekant TA, Arendt LM, Schroeder MD et al (2003) Prolactin induces ERalpha-positive and ERalpha-negative mammary cancer in transgenic mice. Oncogene 22:4664–4674

    Article  PubMed  CAS  Google Scholar 

  53. Tworoger SS, Eliassen AH, Rosner B et al (2004) Plasma prolactin concentrations and risk of postmenopausal breast cancer. Cancer Res 64:6814–6819

    Article  PubMed  CAS  Google Scholar 

  54. Carsol JL, Gingras S, Simard J (2002) Synergistic action of prolactin (PRL) and androgen on PRL-inducible protein gene expression in human breast cancer cells: a unique model for functional cooperation between signal transducer and activator of transcription-5 and androgen receptor. Mol Endocrinol 16:1696–1710

    Article  PubMed  CAS  Google Scholar 

  55. Debily MA, Marhomy SE, Boulanger V et al (2009) A functional and regulatory network associated with PIP expression in human breast cancer. PLoS One 4:e4696

    Article  PubMed  Google Scholar 

  56. Le Doussal V, Zangerle PF, Collette J et al (1985) Immunohistochemistry of a component protein of the breast cystic disease fluid with mol. wt 15,000. Eur J Cancer Clin Oncol 21:715–725

    Article  PubMed  Google Scholar 

  57. Middleton LP, Palacios DM, Bryant BR et al (2000) Pleomorphic lobular carcinoma: morphology, immunohistochemistry, and molecular analysis. Am J Surg Pathol 24:1650–1656

    Article  PubMed  CAS  Google Scholar 

  58. Radhi JM (2000) Immunohistochemical analysis of pleomorphic lobular carcinoma: higher expression of p53 and chromogranin and lower expression of ER and PgR. Histopathology 36:156–160

    Article  PubMed  CAS  Google Scholar 

  59. Selim AA, El-Ayat G, Wells CA (2001) Immunohistochemical localization of gross cystic disease fluid protein-15, -24 and -44 in ductal carcinoma in situ of the breast: relationship to the degree of differentiation. Histopathology 39:198–202

    Article  PubMed  CAS  Google Scholar 

  60. Mazoujian G, Bodian C, Haagensen DE Jr et al (1989) Expression of GCDFP-15 in breast carcinomas. Relationship to pathologic and clinical factors. Cancer 63:2156–2161

    Article  PubMed  CAS  Google Scholar 

  61. Chen WY, Ramamoorthy P, Chen N et al (1999) A human prolactin antagonist, hPRL-G129R, inhibits breast cancer cell proliferation through induction of apoptosis. Clin Cancer Res 5:3583–3593

    PubMed  CAS  Google Scholar 

  62. Chen NY, Holle L, Li W et al (2002) In vivo studies of the anti-tumor effects of a human prolactin antagonist, hPRL-G129R. Int J Oncol 20:813–818

    PubMed  CAS  Google Scholar 

  63. Beck MT, Chen NY, Franek KJ et al (2003) Prolactin antagonist-endostatin fusion protein as a targeted dual-functional therapeutic agent for breast cancer. Cancer Res 63:3598–3604

    PubMed  CAS  Google Scholar 

  64. Scotti ML, Langenheim JF, Tomblyn S et al (2008) Additive effects of a prolactin receptor antagonist, G129R, and herceptin on inhibition of HER2-overexpressing breast cancer cells. Breast Cancer Res Treat 111:241–250

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr Frances O’Malley (Mount Sinai Hospital, Toronto) for providing us cases for the microarray analysis. This study was supported by grants from the Dean’s Fund, Faculty of Medicine, University of Toronto and the Streams of Excellence Program of the Canadian Breast Cancer Research Alliance to S.J.D., the Canadian Institutes of Health Research (CIHR) Molecular Pathology Fellowship (STP-53912) and the Ontario Institute for Cancer Research (OICR) grant TSAO-OICR-RF-007 to D.T.T.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan J. Done.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran-Thanh, D., Arneson, N.C., Pintilie, M. et al. Amplification of the prolactin receptor gene in mammary lobular neoplasia. Breast Cancer Res Treat 128, 31–40 (2011). https://doi.org/10.1007/s10549-010-1025-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1025-6

Keywords

Navigation