Skip to main content

Advertisement

Log in

Dual targeting of EphA2 and ER restores tamoxifen sensitivity in ER/EphA2-positive breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Overexpression and altered function of EphA2 receptor tyrosine kinase are critical in the progression of breast cancer and provide a target for breast cancer therapy. We have previously demonstrated that EphA2 overexpression decreases estrogen dependence and Tamoxifen sensitivity both in vitro and in vivo. EA5, a novel monoclonal antibody that mimicks the binding of ephrin A to EphA2, reverses the effect of EphA2 overexpression and restores Tamoxifen sensitivity in EphA2-transfected MCF-7 cells in vitro. To explore the role of EphA2 overexpression on ER-dependent mechanisms, we used two different ER+/EphA2-transfected cell line models (MCF-7neo/MCF-7EphA2 and T47Dneo/T47DEphA2). EA5 inhibits primary tumor growth and restores Tamoxifen sensitivity in the MCF-7EphA2 xenografts. Using the T47DEphA2 in vitro model, we verified that EphA2 decreases ER activation in response to E2 stimulation consistent with our earlier results in MCF-7EphA2 model. We found no direct interaction between ER and EphA2 and no difference in expression of canonical ER-dependent proteins or ER co-regulators. However, E2 stimulation phosphorylates FAKTyr925 only in ER+/EphA2+ cell lines. Treatment of T47DEphA2 cells with EA5 and Tamoxifen leads to dephosphorylation of FAKTyr925 in response to E2. Our data demonstrate that dual targeting of EphA2 and ER is a promising approach for delaying resistance to Tamoxifen. The data support our hypothesis that EphA2 impacts ER function via a FAK dependent pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Eph Nomenclature Committee (1997) Unified nomenclature for Eph family receptors and their ligands, the ephrins. Cell 90:403–404

    Article  Google Scholar 

  2. Pasquale EB (2008) Eph-ephrin bidirectional signaling in physiology and disease. Cell 133:38–52

    Article  PubMed  CAS  Google Scholar 

  3. Vaught D, Brantley-Sieders DM, Chen J (2008) Eph receptors in breast cancer: roles in tumor promotion and tumor suppression. Breast Cancer Res 10:217

    Article  PubMed  Google Scholar 

  4. Lindberg RA, Hunter T (1990) cDNA cloning, characterization of eck, an epithelial cell receptor protein-tyrosine kinase in the eph/elk family of protein kinases. Mol Cell Biol 10:6316–6324

    PubMed  CAS  Google Scholar 

  5. Wykosky J, Debinski W (2008) The EphA2 receptor and ephrinA1 ligand in solid tumors: function and therapeutic targeting. Mol Cancer Res 6:1795–1806

    Article  PubMed  CAS  Google Scholar 

  6. Zelinski DP, Zantek ND, Stewart JC, Irizarry AR, Kinch MS (2001) EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res 61:2301–2306

    PubMed  CAS  Google Scholar 

  7. Zantek ND, Walker-Daniels J, Stewart J, Hansen RK, Robinson D, Miao H, Wang B, Kung HJ, Bissell MJ, Kinch MS (2001) MCF-10A-NeoST: a new cell system for studying cell-ECM and cell-cell interactions in breast cancer. Clin Cancer Res 7:3640–3648

    PubMed  CAS  Google Scholar 

  8. Zelinski DP, Zantek ND, Walker-Daniels J, Peters MA, Taparowsky EJ, Kinch MS (2002) Estrogen and Myc negatively regulate expression of the EphA2 tyrosine kinase. J Cell Biochem 85:714–720

    Article  PubMed  CAS  Google Scholar 

  9. Zantek ND, Azimi M, Fedor-Chaiken M, Wang B, Brackenbury R, Kinch MS (1999) E-cadherin regulates the function of the EphA2 receptor tyrosine kinase. Cell Growth Differ 10:629–638

    PubMed  CAS  Google Scholar 

  10. Pan M (2005) Overexpression of EphA2 gene in invasive human breast cancer and its association with hormone receptor status [ASCO annual meeting proceedings]. J Clin Oncol 23:9583

    Google Scholar 

  11. Martin KJ, Patrick DR, Bissell MJ, Fournier MV (2008) Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets. PLoS One 3:e2994

    Article  PubMed  Google Scholar 

  12. Fournier MV, Martin KJ, Kenny PA et al (2006) Gene expression signature in organized and growth-arrested mammary acini predicts good outcome in breast cancer. Cancer Res 66:7095–7102

    Article  PubMed  CAS  Google Scholar 

  13. Fox BP, Kandpal RP (2004) Invasiveness of breast carcinoma cells and transcript profile: Eph receptors and ephrin ligands as molecular markers of potential diagnostic and prognostic application. Biochem Biophys Res Commun 318:882–892

    Article  PubMed  CAS  Google Scholar 

  14. Brantley-Sieders DM, Zhuang G, Hicks D, Fang WB, Hwang Y, Cates JM, Coffman K, Jackson D, Bruckheimer E, Muraoka-Cook RS, Chen J (2008) The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling. J Clin Investig 118:64–78

    Article  PubMed  CAS  Google Scholar 

  15. Lu M, Miller KD, Gökmen-Polar Y, Jeng MH, Kinch MS (2003) EphA2 overexpression decreases estrogen dependence and tamoxifen sensitivity. Cancer Res 63:3425–3429

    PubMed  CAS  Google Scholar 

  16. Carles-Kinch K, Kilpatrick KE, Stewart JC, Kinch MS (2002) Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res 62:2840–2847

    PubMed  CAS  Google Scholar 

  17. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  PubMed  CAS  Google Scholar 

  18. Gökmen-Polar Y, Mehta R, Tuzmen S, Mousses S, Thorat MA, Sanders KL, Turbin D, Leung S, Huntsman DG, Sledge GW Jr, Badve S (2010) Differential subcellular expression of protein kinase C betaII in breast cancer: correlation with breast cancer subtypes. Breast Cancer Res Treat. doi:10.1007/s10549-010-0733-2

  19. Parri M, Taddei ML, Bianchini F, Calorini L, Chiarugi P (2009) EphA2 reexpression prompts invasion of melanoma cells shifting from mesenchymal to amoeboid-like motility style. Cancer Res 69:2072–2081

    Article  PubMed  CAS  Google Scholar 

  20. McKenna NJ, O’Malley BW (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108:465–474

    Article  PubMed  CAS  Google Scholar 

  21. Hall JM, McDonnell DP (2005) Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting. Mol Interv 5:343–357

    Article  PubMed  Google Scholar 

  22. Schiff R, Massarweh S, Shou J, Osborne CK (2003) Breast cancer endocrine resistance: how growth factor signaling and estrogen receptor coregulators modulate response. Clin Cancer Res 9:447S–454S

    PubMed  CAS  Google Scholar 

  23. Katoh M (2007) WNT signaling pathway and stem cell signaling network. Clin Cancer Res 13:4042–4045

    Article  PubMed  CAS  Google Scholar 

  24. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    Article  PubMed  CAS  Google Scholar 

  25. van Amerongen R, Mikels A, Nusse R (2008) Alternative Wnt signaling is initiated by distinct receptors. Sci Signal 1:re9

    Article  PubMed  Google Scholar 

  26. Neth P, Ries C, Karow M, Egea V, Ilmer M, Jochum M (2007) The Wnt signal transduction pathway in stem cells and cancer cells: influence on cellular invasion. Stem Cell Rev 3:18–29

    Article  PubMed  CAS  Google Scholar 

  27. Carter N, Nakamoto T, Hirai H, Hunter T (2002) EphrinA1-induced cytoskeletal re-organization requires FAK and p130(cas). Nat Cell Biol 4:565–573

    PubMed  CAS  Google Scholar 

  28. Miao H, Burnett E, Kinch M, Simon E, Wang B (2000) Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat Cell Biol 2:62–69

    Article  PubMed  CAS  Google Scholar 

  29. Schlaepfer DD, Mitra SK, Ilic D (2004) Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim Biophys Acta 1692:77–102

    PubMed  CAS  Google Scholar 

  30. Kohn AD, Moon RT (2005) Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium 38:439–446

    Article  PubMed  CAS  Google Scholar 

  31. Hsia DA, Mitra SK, Hauck CR, Streblow DN, Nelson JA, Ilic D, Huang S, Li E, Nemerow GR, Leng J, Spencer KS, Cheresh DA, Schlaepfer DD (2003) Differential regulation of cell motility and invasion by FAK. J Cell Biol 160:753–767

    Article  PubMed  CAS  Google Scholar 

  32. Kohno M, Hasegawa H, Miyake M, Yamamoto T, Fujita S (2002) CD151 enhances cell motility and metastasis of cancer cells in the presence of focal adhesion kinase. Int J Cancer 97:336–343

    Article  PubMed  CAS  Google Scholar 

  33. Kinch MS, Carles-Kinch K (2003) Overexpression and functional alterations of the EphA2 tyrosine kinase in cancer. Clin Exp Metastasis 20:59–68

    Article  PubMed  CAS  Google Scholar 

  34. Dodelet VC, Pasquale EB (2000) Eph receptors and ephrin ligands: embryogenesis to tumorigenesis. Oncogene 19:5614–5619

    Article  PubMed  CAS  Google Scholar 

  35. Coffman KT, Hu M, Carles-Kinch K, Tice D, Donacki N, Munyon K, Kifle G, Woods R, Langermann S, Kiener PA, Kinch MS (2003) Differential EphA2 epitope display on normal versus malignant cells. Cancer Res 63:7907–7912

    PubMed  CAS  Google Scholar 

  36. Schiff R, Massarweh SA, Shou J, Bharwani L, Mohsin SK, Osborne CK (2004) Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. Clin Cancer Res 10:331S–336S

    Article  PubMed  CAS  Google Scholar 

  37. Fan M, Yan PS, Hartman-Frey C, Chen L, Paik H, Oyer SL, Salisbury JD, Cheng AS, Li L, Abbosh PH, Huang TH, Nephew KP (2006) Diverse gene expression and DNA methylation profiles correlate with differential adaptation of breast cancer cells to the antiestrogens tamoxifen and fulvestrant. Cancer Res 66:11954–11966

    Article  PubMed  CAS  Google Scholar 

  38. Katoh Y, Katoh M (2006) Comparative integromics on Ephrin family. Oncol Rep 15:1391–1395

    PubMed  CAS  Google Scholar 

  39. Wang Y (2009) Wnt/Planar cell polarity signaling: a new paradigm for cancer therapy. Mol Cancer Ther 8:2103–2109

    Article  PubMed  CAS  Google Scholar 

  40. Schlessinger K, Hall A, Tolwinski N (2009) Wnt signaling pathways meet Rho GTPases. Genes Dev 23:265–277

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. D. Knapp (Purdue University) for EphA2 constructs; Dr. M-H Jeng (Indiana University) for ERE-luciferase, TK-luciferase, purified GST, GST-ER alpha, SRC-1 and AIB1 plasmids; Dr. H. Nakshatri (Indiana University) for NCoR1 and SMRT plasmids. We also thank Karen Coffman (MedImmune) for her assistance in providing EA5 antibody. Gene array was by Miltenyi Biotech Inc. Microarray Service. This work was supported by Susan G. Komen grant (BCTR0503531) to K.D. Miller.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathy D. Miller.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gökmen-Polar, Y., Toroni, R.A., Hocevar, B.A. et al. Dual targeting of EphA2 and ER restores tamoxifen sensitivity in ER/EphA2-positive breast cancer. Breast Cancer Res Treat 127, 375–384 (2011). https://doi.org/10.1007/s10549-010-1004-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1004-y

Keywords

Navigation