Skip to main content
Log in

Multiple Pathways Analysis of Brain Functional Networks from EEG Signals: An Application to Real Data

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

In the present study, we propose a theoretical graph procedure to investigate multiple pathways in brain functional networks. By taking into account all the possible paths consisting of h links between the nodes pairs of the network, we measured the global network redundancy R h as the number of parallel paths and the global network permeability P h as the probability to get connected. We used this procedure to investigate the structural and dynamical changes in the cortical networks estimated from a dataset of high-resolution EEG signals in a group of spinal cord injured (SCI) patients during the attempt of foot movement. In the light of a statistical contrast with a healthy population, the permeability index P h of the SCI networks increased significantly (P < 0.01) in the Theta frequency band (3–6 Hz) for distances h ranging from 2 to 4. On the contrary, no significant differences were found between the two populations for the redundancy index R h . The most significant changes in the brain functional network of SCI patients occurred mainly in the lower spectral contents. These changes were related to an improved propagation of communication between the closest cortical areas rather than to a different level of redundancy. This evidence strengthens the hypothesis of the need for a higher functional interaction among the closest ROIs as a mechanism to compensate the lack of feedback from the peripheral nerves to the sensomotor areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PloS Comput Biol 3(2):e17

    Article  PubMed  Google Scholar 

  • Astolfi L, Cincotti F, Mattia D, De Vico Fallani F, Salinari S, Ursino M, Zavaglia M, Marciani MG, Babiloni F (2006) Estimation of the cortical connectivity patterns during the intention of limb movements. IEEE Eng Med Biol Mag 25(4):32–38

    Article  PubMed  Google Scholar 

  • Astolfi L, Cincotti F, Mattia D, Marciani MG, Baccalà L, De Vico Fallani F, Salinari S, Ursino M, Zavaglia M, Ding L, Edgar JC, Miller GA, He B, Babiloni F (2007) A comparison of different cortical connectivity estimators for high resolution EEG recordings. Hum Brain Mapp 28(2):143–157

    Article  PubMed  Google Scholar 

  • Babiloni F, Babiloni C, Locche L, Cincotti F, Rossini PM, Carducci F (2000) High resolution EEG: source estimates of Laplacian-transformed somatosensory-evoked potentials using a realistic subject head model constructed from magnetic resonance images. Med Biol Eng Comput 38:512–519

    Article  CAS  PubMed  Google Scholar 

  • Bartolomei F, Bosma I, Klein M, Baayen JC, Reijneveld JC, Postma TJ, Heimans JJ, van Dijk BW, de Munck JC, de Jongh A, Cover KS, Stam CJ (2006) Disturbed functional connectivity in brain tumour patients: evaluation by graph analysis of synchronization matrices. Clin Neurophysiol 117:2039–2049

    Article  PubMed  Google Scholar 

  • Bassett DS, Meyer-Linderberg A, Achard S, Th Duke, Bullmore E (2006) Adaptive reconfiguration of fractal smallworld human brain functional networks. Proc Natl Acad Sci USA 103:19518–19523

    Article  CAS  PubMed  Google Scholar 

  • Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: Structure and dynamics. Phys Rep 424:175–308

    Article  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    Article  CAS  PubMed  Google Scholar 

  • Chavez M, Valencia M, Navarro V, Latora V, Martinerie J (2010) Functional modularity of background activities in normal and epileptic brain networks. Phys Rev Lett 104(11):118701

    Article  CAS  PubMed  Google Scholar 

  • Costa LF, Rodrigues FA. (2008). Superedges: connecting structure and dynamics in complex networks, arXiv:0801.4068v2

  • De Vico Fallani F, Astolfi L, Cincotti F, Mattia D, Marciani MG, Salinari S, Kurths J, Gao S, Cichocki A, Colosimo A, Babiloni F (2007) Cortical functional connectivity networks in normal and spinal cord injured patients: evaluation by graph analysis. Hum Brain Mapp 28:1334–1336

    Article  PubMed  Google Scholar 

  • De Vico Fallani F, Astolfi L, Cincotti F, Mattia D, Marciani MG, Tocci A, Salinari S, Witte H, Hesse W, Gao S, Colosimo A, Babiloni F (2008) Cortical network dynamics during foot movements. Neuroinformatics 6(1):23–34

    Article  PubMed  Google Scholar 

  • Duffau H (2006) Brain plasticity: From pathophysiological mechanisms to therapeutic applications. J Clin Neurosci 13:885–897

    Article  PubMed  Google Scholar 

  • Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94:018102

    Article  PubMed  Google Scholar 

  • Gevins A, Le J, Martin N, Brickett P, Desmond J, Reutter B (1994) High resolution EEG: 124-channel recording, spatial deblurring and MRI integration methods. Electroencephalogr Clin Neurophysiol 39:337–358

    Google Scholar 

  • Goh KI, Kahng B, Kim D (2001) Universal behavior of load distribution in scale-free networks. Phys Rev Lett 87:278701

    Article  CAS  PubMed  Google Scholar 

  • Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438

    Article  Google Scholar 

  • Kaminski M, Ding M, Truccolo WA, Bressler S (2001) Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol Cybern 85:145–157

    Article  CAS  PubMed  Google Scholar 

  • Lago-Fernandez LF, Huerta R, Corbacho F, Siguenza JA (2000) Fast response and temporal coherent oscillations in small-world networks, Phys Rev Lett 84:2758–2761

    Article  CAS  PubMed  Google Scholar 

  • Le J, Gevins A (1993) A method to reduce blur distortion from EEG’s using a realistic head model. IEEE Trans Biomed Eng 40:517–528

    Article  CAS  PubMed  Google Scholar 

  • Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296:910–913

    Article  CAS  PubMed  Google Scholar 

  • Mattia D, Cincotti F, Astolfi L, De Vico Fallani F, Scivoletto G, Marciani M, Babiloni F (2009) Motor cortical responsiveness to attempted movements in tetraplegia: Evidence from neuroelectrical imaging. Clin Neurophysiol 120(1):181–189

    Article  PubMed  Google Scholar 

  • Micheloyannis S, Pachou E, Stam CJ, Vourkas M, Erimaki S, Tsirka V (2006) Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett 402:273–277

    Article  CAS  PubMed  Google Scholar 

  • Milgram S (1967) The small world problem. Psychol Today 1:60–67

    Google Scholar 

  • Pfurtsheller G, Lopes da Silva FH (1999) Event-related EEG/EMG synchronizations and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857

    Article  Google Scholar 

  • Ponten SC, Bartolomei F, Stam CJ (2007) Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol 118(4):918–927

    Article  CAS  PubMed  Google Scholar 

  • Popivanov D, Mineva A, Krekule I (1999) EEG patterns in theta and gamma frequency range and their probable relation to human voluntary movement organization. Neurosci Lett 267:5–8

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues FA, Costa LD (2009) A structure-dynamic approach to cortical organization: Number of paths and accessibility. J Neurosci Methods 183(1):57–62

    Article  PubMed  Google Scholar 

  • Rossini PM (2000) Brain redundancy: responsivity or plasticity? Ann Neurol 48(1):128–130

    Article  CAS  PubMed  Google Scholar 

  • Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15(9):1332–1342

    Article  PubMed  Google Scholar 

  • Sporns O (2002) Graph theory methods for the analysis of neural connectivity patterns. In: Kötter R (ed) Neuroscience databases A practical guide. Kluwer, Boston, pp 171–186

    Google Scholar 

  • Sporns O, Tononi G, Edelman GE (2000) Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw 13:909–922

    Article  CAS  PubMed  Google Scholar 

  • Stam CJ (2004) Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? Neurosci Lett 355:25–28

    Article  CAS  PubMed  Google Scholar 

  • Stam CJ, Jones BF, Manshanden I, van Walsum AM, Montez T, Verbunt JP, de Munck JC, van Dijk BW, Berendse HW, Scheltens P (2006) Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer’s disease. Neuroimage 32:1335–1344

    Article  CAS  PubMed  Google Scholar 

  • Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens Ph (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:92–99

    Article  CAS  PubMed  Google Scholar 

  • Stephan KE, Hilgetag C-C, Burns GAPC, O’Neill MA, Young MP, Kotter R (2000) Computational analysis of functional connectivity between areas of primate cerebral cortex. Phil Trans R Soc Lond B 355:111–126

    Article  CAS  Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    Article  CAS  PubMed  Google Scholar 

  • Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA 91:5033–5037

    Article  CAS  PubMed  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice Hall, Englrwood Cliffs

    Google Scholar 

Download references

Acknowledgments

This study was performed with the support of the COST EU project NEUROMATH (BM 0601) and supported partially by the European ICT Programme Project FP7-224631. This paper only reflects the authors’ views and funding agencies are not liable for any use that may be made of the information contained herein. Luciano da F. Costa thanks CNPq (301303/06-1) and FAPESP (05/00587-5) for sponsorship. Francisco Aparecido Rodrigues is grateful to FAPESP (07/50633-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio De Vico Fallani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Vico Fallani, F., Rodrigues, F.A., da Fontoura Costa, L. et al. Multiple Pathways Analysis of Brain Functional Networks from EEG Signals: An Application to Real Data. Brain Topogr 23, 344–354 (2011). https://doi.org/10.1007/s10548-010-0152-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-010-0152-z

Keywords

Navigation