Skip to main content

Advertisement

Log in

State-Dependency of Transcranial Magnetic Stimulation

  • Review Article
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Transcranial magnetic stimulation (TMS), a tool that allows noninvasive modulation of cortical neural activity, has become an important tool in cognitive neuroscience and is being increasingly explored in neurotherapeutics. Amongst the factors that are likely to influence its efficacy, the importance of the baseline cortical activation state on the impact of TMS has not received much attention. However, this state-dependency is important as the neural impact of any external stimulus represents an interaction with the ongoing brain activity at the time of stimulation. The effects of any external stimulus are therefore not only determined by the properties of that stimulus but also by the activation state of the brain. Here we review the existing evidence on the state-dependency of TMS and propose how its systematic study can provide unique insights into brain function and significantly enhance the effectiveness of TMS in investigations on the neural basis of perception and cognition. We also describe novel approaches based on this state-dependency which can be used to investigate the properties of distinct neural subpopulations within the stimulated region. Furthermore, we discuss how state-dependency can explain the functional mechanisms through which TMS impairs perception and behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3:1178–1183

    Article  PubMed  CAS  Google Scholar 

  • Albrecht DG, Farrar SB, Hamilton DB (1984) Spatial contrast adaptation characteristics of neurones recorded in the cat’s visual cortex. J Physiol 347:713–739

    PubMed  CAS  Google Scholar 

  • Bestmann S, Swayne O, Blankenburg F, Ruff CC, Haggard P, Weiskopf N, Josephs O, Driver J, Rothwell JC, Ward NS (2008) Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex. Cereb Cortex 18(6):1281–1291

    Article  PubMed  Google Scholar 

  • Brighina F, Piazza A, Daniele O, Fierro B (2002) Modulation of visual cortical excitability in migraine with aura: effects of 1 Hz repetitive transcranial magnetic stimulation. Exp Brain Res 145(2):177–181

    Article  PubMed  Google Scholar 

  • Campana G, Cowey A, Casco C, Oudsen I, Walsh V (2007) Left frontal eye field remembers “where” but not “what”. Neuropsychologia 45(1):2340–2345

    Article  PubMed  Google Scholar 

  • Campana G, Cowey A, Walsh V (2002) Priming of motion direction and area V5/MT: a test of perceptual memory. Cereb Cortex 12:663–669

    Article  PubMed  Google Scholar 

  • Campana G, Cowey A, Walsh V (2006) Visual area V5/MT remembers “what” but not “where”. Cereb Cortex 16:1766–1770

    Article  PubMed  Google Scholar 

  • Camprodon JC, Romei V, Halligan E, Shih MC, Pascual-Leone A. Different times of striate cortex contribution to face recognition. J Cogn Neurosci (under review)

  • Carandini M, Ferster D (1997) A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. Science 276:949–952

    Article  PubMed  CAS  Google Scholar 

  • Carandini M, Movshon JA, Ferster D (1988) Pattern adaptation and cross-orientation interactions in the primary visual cortex. Neuropharmacology 37:501–511

    Article  Google Scholar 

  • Cattaneo Z, Silvanto J (2008a) Investigating visual motion perception using the TMS-adaptation paradigm. Neuroreport 19(14):1423–1427

    Article  PubMed  Google Scholar 

  • Cattaneo Z, Silvanto J (2008b) Time course of the state-dependent effect of transcranial magnetic stimulation in the TMS-adaptation paradigm. Neurosci Lett (Available online)

  • Cattaneo Z, Rota F, Vecchi T, Silvanto J. Using state-dependency of TMS to investigate letter selectivity in the left posterior parietal cortex: a comparison of TMS-priming and TMS-adaptation paradigms. Eur J Neurosci (in press)

  • Cowey A (2005) The Ferrier Lecture 2004 what can transcranial magnetic stimulation tell us about how the brain works? Philos Trans R Soc Lond B Biol Sci 360:1185–1205

    Article  PubMed  Google Scholar 

  • Desimone R (1996) Neural mechanisms for visual memory and their role in attention. Proc Natl Acad Sci USA 93:13494–13499

    Article  PubMed  CAS  Google Scholar 

  • Dragoi V, Sharma J, Sur M (2000) Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron 28:287–298

    Article  PubMed  CAS  Google Scholar 

  • Engel SA (2005) Adaptation of oriented and unoriented color-selective neurons in human visual areas. Neuron 45:613–623

    Article  PubMed  CAS  Google Scholar 

  • Gibson JJ, Radner M (1937) Adaptation, aftereffect and contrast in the perception of tilted lines: I. Quantitative studies. J Exp Psychol 20:453–467

    Article  Google Scholar 

  • Grill-Spector K, Henson R, Martin A (2006) Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn Sci 10:14–23

    Article  PubMed  Google Scholar 

  • Grosbras MH, Paus T (2003) Transcranial magnetic stimulation of the human frontal eye field facilitates visual awareness. Eur J Neurosci 18:3121–3126

    Article  PubMed  Google Scholar 

  • James TW, Gauthier I (2006) Repetition-induced changes in BOLD response reflect accumulation of neural activity. Hum Brain Mapp 27(1):37–46

    Google Scholar 

  • Kastner S, Ungeleider LG (2003) Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23:315–341

    Google Scholar 

  • Kohn A, Movshon JA (2003) Neuronal adaptation to visual motion in area MT of the macaque. Neuron 39:681–691

    Article  PubMed  CAS  Google Scholar 

  • Lang N, Siebner HR, Ernst D, Nitsche MA, Paulus W, Lemon RN, Rothwell JC (2004) Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects. Biol Psychiatry 56:634–635

    Article  PubMed  Google Scholar 

  • Li L, Miller EK, Desimone R (1993) The representation of stimulus familiarity in anterior inferior temporal cortex. J Neurophysiol 69:1918–1929

    PubMed  CAS  Google Scholar 

  • Magnussen S, Greenlee MW (1999) The psychophysics of perceptual memory. Psychol Res 62:81–92

    Article  PubMed  CAS  Google Scholar 

  • Maljkovic V, Nakayama K (1994) Priming of pop-out: I. Role of features. Mem Cognit 22:657–672

    PubMed  CAS  Google Scholar 

  • Maljkovic V, Nakayama K (1996) Priming of pop-out: II. The role of position. Percept Psychophys 58:977–991

    PubMed  CAS  Google Scholar 

  • Mather G et al (1998) The motion after-effect—a modern perspective. The MIT Press, Boston, MA

    Google Scholar 

  • Moliadze V, Zhao Y, Eysel U, Funke K (2003) Effect of transcranial magnetic stimulation on single-unit activity in the cat primary visual cortex. J Physiol 553:665–679

    Article  PubMed  CAS  Google Scholar 

  • Movshon JA, Lennie P (1979) Pattern-selective adaptation in visual cortical neurones. Nature 1278:850–852

    Article  Google Scholar 

  • Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC (1997) Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci 17:3178–3184

    PubMed  CAS  Google Scholar 

  • Pitcher D, Walsh V, Yovel G, Duchaine B (2007) TMS evidence for the involvement of the right occipital face area in early face processing. Curr Biol 17:1568–1573

    Article  PubMed  CAS  Google Scholar 

  • Ridding MC, Rothwell JC (2007) Is there a future of therapeutic use of transcranial magnetic stimulation? Nat Rev Neurosci 8:559–567

    Article  PubMed  CAS  Google Scholar 

  • Romei V, Murray MM, Merabet LB, Thut G (2007) Occipital transcranial magnetic stimulation has opposing effects on visual and auditory stimulus detection: implications for multisensory interactions. J Neurosci 27:11465–11472

    Article  PubMed  CAS  Google Scholar 

  • Romei V, Rihs T, Brodbeck V, Thut G (2008) Resting electroencephalogram alpha-p7wer over posterior sites indexes baseline visual cortex excitability. Neuroreport 19:203–208

    PubMed  Google Scholar 

  • Sack AT, Kohler A, Bestmann S, Linden DE, Dechent P, Goebel R, Baudewig J (2007) Imaging the brain activity changes underlying impaired visuospatial judgments: simultaneous FMRI, TMS, and behavioral studies. Cereb Cortex 17(12):2841–2852

    Article  PubMed  Google Scholar 

  • Sanchez-Vives MV, Nowak LG, McCormick DA (2000) Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. J Neurosci 20:4267–4285

    PubMed  CAS  Google Scholar 

  • Schacter DL, Buckner RL (1998) Priming and the brain. Neuron 20:185–195

    Article  PubMed  CAS  Google Scholar 

  • Schummers J, Yu H, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320:1638–1643

    Article  PubMed  CAS  Google Scholar 

  • Sejnowski TJ (1977) Statistical constraints on synaptic plasticity. J Theor Biol 69:385–389

    Article  PubMed  CAS  Google Scholar 

  • Siebner HR, Lang N, Rizzo V, Nitsche MA, Paulus W, Lemon RN, Rothwell JC (2004) Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci 24:3379–3385

    Article  PubMed  CAS  Google Scholar 

  • Silvanto J, Cattaneo Z, Battelli L, Pascual-Leone A (2008) Baseline cortical excitability determines whether TMS disrupts or facilitates behavior. J Neurophysiol 99:2725–2730

    Article  PubMed  Google Scholar 

  • Silvanto J, Muggleton NG (2008a) New light through old windows: moving beyond the virtual lesion approach to transcranial magnetic stimulation. Neuroimage 39:549–552

    Article  PubMed  Google Scholar 

  • Silvanto J, Muggleton NG (2008b) Testing the validity of the TMS state-dependency approach: targeting functionally distinct motion-selective neural populations in visual areas V1/V2 and V5/MT+. Neuroimage 40:1841–1848

    Article  PubMed  Google Scholar 

  • Silvanto J, Muggleton NG, Cowey A, Walsh V (2007) Neural adaptation reveals state-dependent effects of transcranial magnetic stimulation. Eur J Neurosci 25:1874–1881

    Article  PubMed  Google Scholar 

  • Stewart L, Battelli L, Walsh V, Cowey A (1999) Motion perception and perceptual learning studied by magnetic stimulation. Electroencephalogr Clin Neurophysiol Suppl 51:334–350

    PubMed  CAS  Google Scholar 

  • Theoret H, Kobayashi M, Ganis G, Di Capua P, Pascual-Leone A (2002) Repetitive transcranial magnetic stimulation of human area MT/V5 disrupts perception and storage of the motion aftereffect. Neuropsychologia 40:2280–2287

    Article  PubMed  Google Scholar 

  • Tootell RB, Hadjikhani NK, Vanduffel W, Liu AK, Mendola JD, Sereno MI, Dale AM (1998) Functional analysis of primary visual cortex (V1) in humans. Proc Natl Acad Sci USA 95: 811–817

    Article  PubMed  CAS  Google Scholar 

  • Töpper R, Mottaghy FM, Brügmann M, Noth J, Huber W (1998) Facilitation of picture naming by focal transcranial magnetic stimulation of Wernicke’s area. Exp Brain Res 121:371–378

    Article  PubMed  Google Scholar 

  • Valero-Cabré A, Payne BR, Pascual-Leone A (2007) Opposite impact on 14C-2-deoxyglucose brain metabolism following patterns of high and low frequency repetitive transcranial magnetic stimulation in the posterior parietal cortex. Exp Brain Res 176:603–615

    Article  PubMed  CAS  Google Scholar 

  • Valero-Cabré A, Payne BR, Rushmore J, Lomber SG, Pascual-Leone A (2005) Impact of repetitive transcranial magnetic stimulation of the parietal cortex on metabolic brain activity: a 14C-2DG tracing study in the cat. Exp Brain Res 163:1–12

    Article  PubMed  Google Scholar 

  • Walsh V, Pascual-Leone A (2003) Transcranial magnetic stimulation: a neurochronometrics of mind. MIT Press, Boston, MA

    Google Scholar 

  • Webster MA, Kaping D, Mizokami Y, Duhamel P (2004) Adaptation to natural facial categories. Nature 428:557–561

    Article  PubMed  CAS  Google Scholar 

  • Wiggs CL, Martin A (1998) Properties and mechanisms of perceptual priming. Curr Opin Neurobiol 8:227–233

    Article  PubMed  CAS  Google Scholar 

  • Wilkins AJ (1986) On the manner in which sensory and cognitive processes contribute to epileptogenesis and are disrupted by it. Acta Neurol Scand 74:91–95

    Article  Google Scholar 

  • Wilkins AJ, Bonanni P, Porciatti V, Guerrini R (2004) Physiology of human photosensitivity. Epilepsia 45(suppl 1):1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Pascual-Leone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silvanto, J., Pascual-Leone, A. State-Dependency of Transcranial Magnetic Stimulation. Brain Topogr 21, 1–10 (2008). https://doi.org/10.1007/s10548-008-0067-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-008-0067-0

Keywords

Navigation