Skip to main content
Log in

Large-Eddy Simulation of the Atmospheric Boundary Layer

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Over the last 50 years the large-eddy simulation (LES) technique has developed into one of the most prominent numerical tools used to study transport processes in the atmospheric boundary layer (ABL). This review examines development of the technique as a tool for ABL research, integration with state-of-the-art scientific computing resources, and some key application areas. Analysis of the published literature indicates that LES research across a broad range of applications accelerated starting around 1990. From that point in time, robust research using LES developed in several different application areas and based on a review of the papers published in this journal, we identify seven major areas of intensive ABL–LES research: convective boundary layers, stable boundary layers, transitional boundary layers, plant canopy flows, urban meteorology and dispersion, surface heterogeneity, and the testing and development of subgrid-scale (SGS) models. We begin with a general overview of LES and then proceed to examine the SGS models developed for use in ABL–LES. After this overview of the technique itself, we review the specific model developments tailored to the identified application areas and the scientific advancements realized using the LES technique in each area. We conclude by examining the computational trends in published ABL–LES research and identify some resource underutilization. Future directions and research needs are identified from a synthesis of the reviewed literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackerman AS, vanZanten MC, Stevens B, Savic-Jovcic V, Bretherton CS, Chlond A, Golaz JC, Jiang H, Khairoutdinov M, Krueger SK, Lewellen DC, Lock A, Moeng CH, Nakamura K, Petters MD, Snider JR, Weinbrecht S, Zulauf M (2009) Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon Weather Rev 137(3):1083–1110. https://doi.org/10.1175/2008MWR2582.1

    Article  Google Scholar 

  • Adrian RJ, Meinhart CD, Tomkins CD (2000) Vortex organization in the outer region of the turbulent boundary layer. J Fluid Mech 422:1–54

    Google Scholar 

  • Albertson JD, Kustas WP, Scanlon TM (2001) Large-eddy simulation over heterogeneous terrain with remotely sensed land surface conditions. Water Resour Res 37(7):1939–1953

    Google Scholar 

  • Anderson R, Meneveau C (1999) Effects of the similarity model in finite-difference LES of isotropic turbulence using a Lagrangian dynamic mixed model. Flow Turbul Combust 62(3):201–225

    Google Scholar 

  • Anderson W (2012) An immersed boundary method wall model for high-Reynolds number channel flow over complex topography. Int J Numer Methods Fluids 71:1588–1608

    Google Scholar 

  • Anderson W (2019a) A15-1-15. J Fluid Mech 869:27–84

    Google Scholar 

  • Anderson W (2019b) Non-periodic phase-space trajectories of roughness-driven secondary flows in high-\(re_\tau \) boundary layers and channels. J Fluid Mech 869:27–84

    Google Scholar 

  • Anderson W, Meneveau C (2010) A large-eddy simulation model for boundary-layer flow over surfaces with horizontally resolved but vertically unresolved roughness elements. Boundary-Layer Meteorol 137:397–415

    Google Scholar 

  • Anderson W, Meneveau C (2011) Dynamic roughness model for large-eddy simulation of turbulent flow over multiscale, fractal-like rough surfaces. J Fluid Mech 679:288–314

    Google Scholar 

  • Anderson W, Barros J, Christensen K, Awasthi A (2015) Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness. J Fluid Mech 768:316–347

    Google Scholar 

  • Andren A (1995) The structure of stably stratified atmospheric boundary layers: a large-eddy simulation study. Q J R Meteorol Soc 121(525):961–985

    Google Scholar 

  • Andren A, Brown AR, Mason PJ, Graf J, Schumann U, Moeng CH, Nieuwstadt FT (1994) Large-eddy simulation of a neutrally stratified boundary layer: a comparison of four computer codes. Q J R Meteorol Soc 120(520):1457–1484

    Google Scholar 

  • Antonia R, Luxton R (1971) The response of a turbulent boundary layer to a step change in surface roughness part i. Smooth to rough. J Fluid Mech 48:721–761

    Google Scholar 

  • Armenio V, Sarkar S (2002) An investigation of stably stratified turbulent channel flow using large-eddy simulation. J Fluid Mech 459:1–42

    Google Scholar 

  • Aumond P, Masson V, Lac C, Gauvreau B, Dupont S, Berengier M (2013) Including the drag effects of canopies: real case large-eddy simulation studies. Boundary-Layer Meteorol 146(1):65–80

    Google Scholar 

  • Avissar R, Schmidt T (1998) An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J Atmos Sci 55(16):2666–2689. https://doi.org/10.1175/1520-0469(1998)055<2666:AEOTSA>2.0.CO;2

    Article  Google Scholar 

  • Ayotte KW, Sullivan PP, Andren A, Doney SC, Holtslag AA, Large WG, McWilliams JC, Moeng CH, Otte MJ, Tribbia JJ et al (1996) An evaluation of neutral and convective planetary boundary-layer parameterizations relative to large eddy simulations. Boundary-Layer Meteorol 79(1–2):131–175

    Google Scholar 

  • Baidya Roy S, Avissar R (2000) Scales of response of the convective boundary layer to land-surface heterogeneity. Geophys Res Lett 27(4):533–536

    Google Scholar 

  • Bailey BN, Stoll R (2013) Turbulence in sparse, organized vegetative canopies: a large-eddy simulation study. Boundary-Layer Meteorol 147:369–400. https://doi.org/10.1007/s10546-012-9796-4

    Article  Google Scholar 

  • Bailey BN, Stoll R (2016) The creation and evolution of coherent structures in plant canopy flows and their role in turbulent transport. J Fluid Mech 789:425–460

    Google Scholar 

  • Bailey BN, Stoll R, Pardyjak ER, Mahaffee WF (2014) Effect of vegetative canopy architecture on vertical transport of massless particles. Atmos Environ 95:480–489

    Google Scholar 

  • Baker J, Walker HL, Cai X (2004) A study of the dispersion and transport of reactive pollutants in and above street canyons—a large eddy simulation. Atmos Environ 38(39):6883–6892

    Google Scholar 

  • Bao J, Chow F, Lundquist K (2018) Large-eddy simulation over complex terrain using an improved immersed boundary method in the weather research and forecasting mode. Mon Weather Rev 146:2781–2797

    Google Scholar 

  • Bardina J, Ferziger J, Reynolds W (1980) Improved subgrid-scale models for large-eddy simulation. In: 13th Fluid and Plasma Dynamics Conference, pp 1–9. https://doi.org/10.2514/6.1980-1357

  • Basu S, Lacser A (2017) A cautionary note on the use of Monin–Obukhov similarity theory in very high-resolution large-eddy simulations. Boundary-Layer Meteorol 163(2):351–355

    Google Scholar 

  • Basu S, Porté-agel F, Foufoula-Georgiou E, Vinuesa JF, Pahlow M (2006) Revisiting the local scaling hypothesis in stably stratified atmospheric boundary-layer turbulence: an integration of field and laboratory measurements with large-eddy simulations. Boundary-Layer Meteorol 119(3):473–500. https://doi.org/10.1007/s10546-005-9036-2

    Article  Google Scholar 

  • Basu S, Holtslag AA, Van De Wiel BJ, Moene AF, Steeneveld GJ (2008a) An inconvenient truth about using sensible heat flux as a surface boundary condition in models under stably stratified regimes. Acta Geophys 56(1):88–99

    Google Scholar 

  • Basu S, Vinuesa JF, Swift A (2008b) Dynamic LES modeling of a diurnal cycle. J Appl Meteorol Climatol 47(4):1156–1174

    Google Scholar 

  • Beare RJ (2008) The role of shear in the morning transition boundary layer. Boundary-Layer Meteorol 129(3):395–410

    Google Scholar 

  • Beare RJ, Macvean MK, Holtslag AA, Cuxart J, Esau I, Golaz JC, Jimenez MA, Khairoutdinov M, Kosovic B, Lewellen D, Lund TS, Lundquist JK, Mccabe A, Moene AF, Noh Y, Raasch S, Sullivan P (2006) An intercomparison of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol 118(2):247–272

    Google Scholar 

  • Belcher S, Harman I, Finnigan J (2012) The wind in the willows: flows in forest canopies in complex terrain. Annu Rev Fluid Mech 44:479–504

    Google Scholar 

  • Bohrer G, Katul GG, Walko RL, Avissar R (2009) Exploring the effects of microscale structural heterogeneity of forest canopies using large-eddy simulations. Boundary-Layer Meteorol 132(3):351–382

    Google Scholar 

  • Boppana V, Xie ZT, Castro IP (2010) Large-eddy simulation of dispersion from surface sources in arrays of obstacles. Boundary-Layer Meteorol 135(3):433–454

    Google Scholar 

  • Boppana V, Xie ZT, Castro IP (2014) Thermal stratification effects on flow over a generic urban canopy. Boundary-Layer Meteorol 153(1):141–162

    Google Scholar 

  • Bou-Zeid E (2015) Challenging the large eddy simulation technique with advanced a posteriori tests. J Fluid Mech 764:1–4

    Google Scholar 

  • Bou-Zeid E, Meneveau C, Parlange M (2004) Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: blending height and effective surface roughness. Water Resour Res 40(W02):505

    Google Scholar 

  • Bou-Zeid E, Meneveau C, Parlange M (2005) A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys Fluids 17(2):025,105. https://doi.org/10.1063/1.1839152

    Article  Google Scholar 

  • Bou-Zeid E, Parlange M, Meneveau C (2007) On the parameterization of surface roughness at regional scales. J Atmos Sci 64:216–227

    Google Scholar 

  • Bou-Zeid E, Overney J, Rogers BD, Parlange MB (2009) The effects of building representation and clustering in large-eddy simulations of flows in urban canopies. Boundary-Layer Meteorol 132(3):415–436

    Google Scholar 

  • Boudreault LÉ, Dupont S, Bechmann A, Dellwik E (2017) How forest inhomogeneities affect the edge flow. Boundary-Layer Meteorol 162(3):375–400

    Google Scholar 

  • Brown AR, Derbyshire S, Mason PJ (1994) Large-eddy simulation of stable atmospheric boundary layers with a revised stochastic subgrid model. Q J R Meteorol Soc 120(520):1485–1512

    Google Scholar 

  • Brutsaert W (1982) Evaporation into the atmosphere. Kluwer, Norwell

    Google Scholar 

  • Cai XM (2012) Effects of wall heating on flow characteristics in a street canyon. Boundary-Layer Meteorol 142(3):443–467

    Google Scholar 

  • Cai XM, Barlow J, Belcher S (2008) Dispersion and transfer of passive scalars in and above street canyons–large-eddy simulations. Atmos Environ 42(23):5885–5895

    Google Scholar 

  • Carper MA, Porté-Agel F (2004) The role of coherent structures in subfilter-scale dissipation of turbulence measured in the atmospheric surface layer. J Turbul 5:32–32

    Google Scholar 

  • Carper MA, Porté-Agel F (2008) Subfilter-scale fluxes over a surface roughness transition. Part ii: a priori study of large-eddy simulation models. Boundary-Layer Meteorol 127(1):73–95

    Google Scholar 

  • Cassiani M, Katul G, Albertson J (2008) The effects of canopy leaf area index on airflow across forest edges: large-eddy simulation and analytical results. Boundary-Layer Meteorol 126(3):433–460

    Google Scholar 

  • Castagnera K, Cheng D, Fatoohi R, Hook E, Kramer B, Manning C, Musch J, Niggley C, Saphir W, Sheppard D et al (1994) Clustered workstations and their potential role as high speed compute processors. NAS Computational Services Technical Report RNS-94-003, NAS Systems Division, NASA Ames Research Center

  • Castro IP (2017) Are urban-canopy velocity profiles exponential? Boundary-Layer Meteorol 164(3):337–351

    Google Scholar 

  • Chester S, Meneveau C, Parlange M (2007) Modelling of turbulent flow over fractal trees with renormalized numerical simulation. J Comp Phys 225:427–448

    Google Scholar 

  • Chow FK, Street RL, Xue M, Ferziger JH (2005) Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J Atmos Sci 62(7):2058–2077

    Google Scholar 

  • Clark T (1977) A small-scale dynamic model using terrain-following coordinate transformation. J Comp Phys 24:186–215

    Google Scholar 

  • Colwell RP (2019) How we made the pentium processors. Nat Electron 2(2):83–84

    Google Scholar 

  • Conzemius RJ, Fedorovich E (2006) Dynamics of sheared convective boundary layer entrainment. Part i: methodological background and large-eddy simulations. J Atmos Sci 63(4):1151–1178

    Google Scholar 

  • Courault D, Drobinski P, Brunet Y, Lacarrere P, Talbot C (2007) Impact of surface heterogeneity on a buoyancy-driven convective boundary layer in light winds. Boundary-Layer Meteorol 124(3):383–403

    Google Scholar 

  • Cui Z, Cai X, Baker J, C, (2004) Large-eddy simulation of turbulent flow in a street canyon. Q J R Meteorol Soc 130(599):1373–1394

  • Cuxart J, Holtslag AA, Beare RJ, Bazile E, Beljaars A, Cheng A, Conangla L, Ek M, Freedman F, Hamdi R, Kerstein H, Kitagawa G, Lenderink D, Lewellen J, Mailhot T, Mauritsen V, Perov G, Schayes GJ, Steeneveld GS, Taylor P, Weng W, Wunsch S, Xu KM (2006) Single-column model intercomparison for a stably stratified atmospheric boundary layer. Boundary-Layer Meteorol 118(2):273–303

    Google Scholar 

  • Deardorff JW (1970a) A numerical study of three-dimensional turbulent channel flow at large reynolds numbers. J Fluid Mech 41(2):453–480. https://doi.org/10.1017/S0022112070000691

    Article  Google Scholar 

  • Deardorff JW (1970b) Preliminary results from numerical integrations of the unstable planetary boundary layer. J Atmos Sci 27(8):1209–1211

    Google Scholar 

  • Deardorff JW (1971) On the magnitude of the subgrid scale eddy coefficient. J Comp Phys 7(1):120–133. https://doi.org/10.1016/0021-9991(71)90053-2

    Article  Google Scholar 

  • Deardorff JW (1972a) Numerical investigation of neutral and unstable planetary boundary layers. J Atmos Sci 29:91–115. https://doi.org/10.1175/1520-0469(1972)029<0091:nionau>2.0.co;2

    Article  Google Scholar 

  • Deardorff JW (1972b) Theoretical expression for the countergradient vertical heat flux. J Geophys Res 77(30):5900–5904

    Google Scholar 

  • Deardorff JW (1973) The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence. J Fluids Eng 95(3):429–438. https://doi.org/10.1115/1.3447047

    Article  Google Scholar 

  • Deardorff JW (1974a) Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Boundary-Layer Meteorol 7(1):81–106

    Google Scholar 

  • Deardorff JW (1974b) Three-dimensional numerical study of turbulence in an entraining mixed layer. Boundary-Layer Meteorol 7(2):199–226

    Google Scholar 

  • Deardorff JW (1980) Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol 18:495–527. https://doi.org/10.1007/BF00119502

    Article  Google Scholar 

  • Dipankar A, Stevens B, Heinze R, Moseley C, Zängl G, Giorgetta M, Brdar S (2015) Large eddy simulation using the general circulation model ICON. J Adv Model Earth Syst 7(3):963–986

    Google Scholar 

  • Dörnbrack A, Schumann U (1993) Numerical simulation of turbulent convective flow over wavy terrain. Boundary-Layer Meteorol 65(4):323–355. https://doi.org/10.1007/BF00707032

    Article  Google Scholar 

  • Dupont S, Brunet Y (2008) Edge flow and canopy structure: a large-eddy simulation study. Boundary-Layer Meteorol 126(1):51–71

    Google Scholar 

  • Dupont S, Gosselin F, Py C, De Langre E, Hemon P, Brunet Y (2010) Modelling waving crops using large-eddy simulation: comparison with experiments and a linear stability analysis. J Fluid Mech 652:5–44

    Google Scholar 

  • Dwyer MJ, Patton EG, Shaw RH (1997) Turbulent kinetic energy budgets from a large-eddy simulation of airflow above and within a forest canopy. Boundary-Layer Meteorol 84(1):23–43

    Google Scholar 

  • Ebert EE, Schumann U, Stull RB (1989) Nonlocal turbulent mixing in the convective boundary layer evaluated from large-eddy simulation. J Atmos Sci 46(14):2178–2207

    Google Scholar 

  • Fedorovich E, Conzemius R, Esau I, Chow FK, Lewellen D, Moeng CH, Sullivan P, Pino D, de Arellano JVG (2004) Entrainment into sheared convective boundary layers as predicted by different large eddy simulation codes. In: 16th Symposium on boundary layers and turbulence, Portland, ME. American Meteorological Society, p P4.7

  • Fenger J (1999) Urban air quality. Atmos Environ 33(29):4877–4900

    Google Scholar 

  • Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32(1):519–571

    Google Scholar 

  • Finnigan JJ, Shaw RH, Patton EG (2009) Turbulence structure above a vegetation canopy. J Fluid Mech 637:387–424

    Google Scholar 

  • Fitzmaurice L, Shaw RH, Paw UKT, Patton EG (2004) Three-dimensional scalar microfront systems in a large-eddy simulation of vegetation canopy flow. Boundary-Layer Meteorol 112(1):107–127

    Google Scholar 

  • Gal-Chen T, Sommerville R (1975) On the use of a coordinate transformation for the solution of the Navier–Stokes equations. J Comp Phys 17:209–228

    Google Scholar 

  • Galmarini S, Beets C, Duynkerke PG, Vila-Guerau de Arellano J (1998) Stable nocturnal boundary layers: a comparison of one-dimensional and large-eddy simulation models. Boundary-Layer Meteorol 88(2):181–210

    Google Scholar 

  • Gao W, Shaw RH, Paw UKT (1989) Observation of organized structure in turbulent flow within and above a forest canopy. Boundary-Layer Meteorol 47(1):349–377. https://doi.org/10.1007/BF00122339

    Article  Google Scholar 

  • Garratt J (1990) The internal boundary layer—a review. Boundary-Layer Meteorol 40:171–203

    Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge

    Google Scholar 

  • Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3(7):1760–1765. https://doi.org/10.1063/1.857955

    Article  Google Scholar 

  • Geurts BJ (2003) Elements of direct and large eddy simulation. RT Edwards, Inc, West Bundaberg

    Google Scholar 

  • Ghosal S, Lund TS, Moin P, Akselvoll K (1995) A dynamic localization model for large-eddy simulation of turbulent flows. J Fluid Mech 286:229–255. https://doi.org/10.1017/S0022112095000711

    Article  Google Scholar 

  • Giacomini B, Giometto MG (2020) On the suitability of general-purpose finite-volume-based solvers for the simulation of atmospheric-boundary-layer flow. Geosci Model Dev Discuss. https://doi.org/10.5194/gmd-2020-84

  • Gibbs JA, Fedorovich E (2014a) Comparison of convective boundary layer velocity spectra retrieved from large-eddy-simulation and weather research and forecasting model data. J Appl Meteorol Climatol 53(377):394. https://doi.org/10.1175/jamc-d-13-033.1

    Article  Google Scholar 

  • Gibbs JA, Fedorovich E (2014b) Effects of temporal discretization on turbulence statistics and spectra in numerically simulated convective boundary layers. Boundary-Layer Meteorol 153(19):41. https://doi.org/10.1007/s10546-014-9936-0

    Article  Google Scholar 

  • Gibbs JA, Fedorovich E (2016) Sensitivity of turbulence statistics in the lower portion of a numerically simulated stable boundary layer to parameters of the Deardorff subgrid turbulence model. Q J R Meteorol Soc 142(698):2205–2213

    Google Scholar 

  • Gibbs JA, Fedorovich E, Shapiro A (2015) Revisiting surface heat-flux and temperature boundary conditions in models of stably stratified boundary-layer flows. Boundary-Layer Meteorol 154(2):171–187

    Google Scholar 

  • Giometto M, Christen A, Meneveau C, Fang J, Krafczyk M, Parlange M (2016) Spatial characteristics of roughness sublayer mean flow and turbulence over a realistic urban surface. Boundary-Layer Meteorol 160(3):425–452

    Google Scholar 

  • Giometto MG, Christen A, Egli PE, Schmid M, Tooke R, Coops N, Parlange MB (2017) Effects of trees on mean wind, turbulence and momentum exchange within and above a real urban environment. Adv Water Resour 106:154–168

    Google Scholar 

  • Grimmond C, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38(9):1262–1292

    Google Scholar 

  • Grinstein FF, Margolin LG, Rider WJ (2007) Implicit large eddy simulation, vol 10. Cambridge University Press, Cambridge

    Google Scholar 

  • Gropp W, Lusk E, Doss N, Skjellum A (1996) A high-performance, portable implementation of the MPI message passing interface standard. Parallel Comput 22(6):789–828

    Google Scholar 

  • Hadfield MG, Cotton WR, Pielke RA (1992) Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part II: the effect of changes in wavelength and wind speed. Boundary-Layer Meteorol 58:307–327

    Google Scholar 

  • Hanna S, Tehranian S, Carissimo B, Macdonald R, Lohner R (2002) Comparisons of model simulations with observations of mean flow and turbulence within simple obstacle arrays. Atmos Environ 36(32):5067–5079

    Google Scholar 

  • Hayati AN, Stoll R, Pardyjak ER, Harman T, Kim J (2019) Comparative metrics for computational approaches in non-uniform street-canyon flows. Build Environ 158:16–27

    Google Scholar 

  • Hechtel LM, Stul RB, Moeng CH (1990) The effects of nonhomogeneous surface fluxes on the convective boundary layer: a case study using large-eddy simulation. J Atmos Sci 47(14):1721–1741. https://doi.org/10.1175/1520-0469(1990)047<1721:TEONSF>2.0.CO;2

    Article  Google Scholar 

  • Heerwaarden CCv, Mellado JP, Lozar AD, (2014) Scaling laws for the heterogeneously heated free convective boundary layer. J Atmos Sci 71(11):3975–4000. https://doi.org/10.1175/jas-d-13-0383.1

  • Heinze R, Dipankar A, Henken CC, Moseley C, Sourdeval O, Trömel S, Xie X, Adamidis P, Ament F, Baars H et al (2017) Large-eddy simulations over Germany using ICON: a comprehensive evaluation. Q J R Meteorol Soc 143(702):69–100

    Google Scholar 

  • Hildebrand PH, Ackerman B (1984) Urban effects on the convective boundary layer. J Atmos Sci 41(1):76–91

    Google Scholar 

  • Hinze JO (1967) Secondary currents in wall turbulence. Phys Fluids 10(9):S122–S125. https://doi.org/10.1063/1.1762429

    Article  Google Scholar 

  • Holtslag A, Moeng CH (1991) Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J Atmos Sci 48(14):1690–1698

    Google Scholar 

  • Holtslag A, Svensson G, Baas P, Basu S, Beare B, Beljaars A, Bosveld F, Cuxart J, Lindvall J, Steeneveld G et al (2013) Stable atmospheric boundary layers and diurnal cycles: challenges for weather and climate models. Bull Am Meteorol Soc 94(11):1691–1706

    Google Scholar 

  • Honnert R, Efstathiou GA, Beare RJ, Ito J, Lock A, Neggers R, Plant RS, Shin HH, Tomassini L, Zhou B (2020) The atmospheric boundary layer and the gray zone of turbulence: a critical review. J Geophys Res Atmos. https://doi.org/10.1029/2019jd030317

    Article  Google Scholar 

  • Huang HY, Margulis SA (2010) Evaluation of a fully coupled large-eddy simulation-land surface model and its diagnosis of land-atmosphere feedbacks. Water Resour Res 46(6):

  • Huang J, Bou-Zeid E (2013) Turbulence and vertical fluxes in the stable atmospheric boundary layer. Part i: a large-eddy simulation study. J Atmos Sci 70(6):1513–1527

  • Huang J, Lee X, Patton EG (2009) Dissimilarity of scalar transport in the convective boundary layer in inhomogeneous landscapes. Boundary-Layer Meteorol 130(3):327–345

    Google Scholar 

  • Hutchins N, Marusic I (2007) Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J Fluid Mech 579:1–28

    Google Scholar 

  • Hwang H, Lee J (2018) Secondary flows in turbulent boundary layers over longitudinal surface roughness. Phys Rev Fluids 3(014):608

    Google Scholar 

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Google Scholar 

  • Kanda M (2006) Large-eddy simulations on the effects of surface geometry of building arrays on turbulent organized structures. Boundary-Layer Meteorol 118(1):151–168

    Google Scholar 

  • Kanda M, Hino M (1994) Organized structures in developing turbulent flow within and above a plant canopy, using a large eddy simulation. Boundary-Layer Meteorol 68(3):237–257

    Google Scholar 

  • Kanda M, Inagaki A, Letzel MO, Raasch S, Watanabe T (2004a) LES study of the energy imbalance problem with eddy covariance fluxes. Boundary-Layer Meteorol 110(3):381–404

    Google Scholar 

  • Kanda M, Moriwaki R, Kasamatsu F (2004b) Large-eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays. Boundary-Layer Meteorol 112(2):343–368

    Google Scholar 

  • Kanda M, Inagaki A, Miyamoto T, Gryschka M, Raasch S (2013) A new aerodynamic parametrization for real urban surfaces. Boundary-Layer Meteorol 148(2):357–377

    Google Scholar 

  • Khairoutdinov MF, Krueger SK, Moeng CH, Bogenschutz PA, Randall DA (2009) Large-eddy simulation of maritime deep tropical convection. J Adv Model Earth Syst 1(4)

  • Khan HN, Hounshell DA, Fuchs ER (2018) Science and research policy at the end of Moore’s law. Nat Electron 1(1):14–21

    Google Scholar 

  • Khanna S, Brasseur JG (1997) Analysis of Monin–Obukhov similarity from large-eddy simulation. J Fluid Mech 345:251–286

    Google Scholar 

  • Khanna S, Brasseur JG (1998) Three-dimensional buoyancy-and shear-induced local structure of the atmospheric boundary layer. J Atmos Sci 55(5):710–743

    Google Scholar 

  • Kim SW, Park SU, Moeng CH (2003) Entrainment processes in the convective boundary layer with varying wind shear. Boundary-Layer Meteorol 108(2):221–245

    Google Scholar 

  • Kolmogorov AN, Levin V, Hunt JCR, Phillips OM, Williams D (1991) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc R Soc Lond A 434(1890):9–13. https://doi.org/10.1098/rspa.1991.0075

    Article  Google Scholar 

  • Kosović B, Curry JA (2000) A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J Atmos Sci 57(8):1052–1068

    Google Scholar 

  • Kröniger K, De Roo F, Brugger P, Huq S, Banerjee T, Zinsser J, Rotenberg E, Yakir D, Rohatyn S, Mauder M (2018) Effect of secondary circulations on the surface-atmosphere exchange of energy at an isolated semi-arid forest. Boundary-Layer Meteorol 169(2):209–232

    Google Scholar 

  • Kumar V, Kleissl J, Meneveau C, Parlange MB (2006) Large-eddy simulation of a diurnal cycle of the atmospheric boundary layer: Atmospheric stability and scaling issues. Water Resour Res 42(6)

  • Kumar V, Svensson G, Holtslag A, Meneveau C, Parlange MB (2010) Impact of surface flux formulations and geostrophic forcing on large-eddy simulations of diurnal atmospheric boundary layer flow. J Appl Meteorol Climatol 49(7):1496–1516

    Google Scholar 

  • Kustas W, Anderson M (2009) Advances in thermal infrared remote sensing for land surface modeling. Agric For Meteorol 149(12):2071–2081

    Google Scholar 

  • Kustas WP, Albertson JD (2003) Effects of surface temperature contrast on land-atmosphere exchange: a case study from Monsoon 90. Water Resour Res 39(6)

  • Lemone M (1976) Modulation of turbulence energy by longitudinal rolls in an unstable planetary boundary layer. J Atmos Sci 33(7):1308–1320

    Google Scholar 

  • LeMone MA, Angevine WM, Bretherton CS, Chen F, Dudhia J, Fedorovich E, Katsaros KB, Lenschow DH, Mahrt L, Patton EG et al (2019) 100 years of progress in boundary layer meteorology. Meteorol Monogr 59:1–9

    Google Scholar 

  • Leonard A (1974) Energy cascade in large-eddy simulations of turbulent fluid flows. In: Turbulent diffusion in environmental pollution, pp 237–248

  • Lesieur M, Métais O, Comte P (2005) Large-eddy simulations of turbulence. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511755507

    Book  Google Scholar 

  • Li Q, Gentine P, Mellado JP, McColl KA (2018) Implications of nonlocal transport and conditionally averaged statistics on Monin–Obukhov similarity theory and Townsend’s attached eddy hypothesis. J Atmos Sci 75(10):3403–3431

    Google Scholar 

  • Li XX, Liu CH, Leung DY (2008) Large-eddy simulation of flow and pollutant dispersion in high-aspect-ratio urban street canyons with wall model. Boundary-Layer Meteorol 129(2):249–268

    Google Scholar 

  • Li XX, Britter RE, Koh TY, Norford LK, Liu CH, Entekhabi D, Leung DY (2010) Large-eddy simulation of flow and pollutant transport in urban street canyons with ground heating. Boundary-Layer Meteorol 137(2):187–204

    Google Scholar 

  • Lilly DK (1967) The representation of small-scale turbulence in numerical simulations. In: Proceedings IBM scientific computing symposium on environmental sciences, Yorktown Heights, NY, IBM form no. 320-1951, pp 195–209

  • Lilly DK (1992) A proposed modification of the Germano subgrid-scale closure method. Phys Fluids A 4(3):633–635. https://doi.org/10.1063/1.858280

    Article  Google Scholar 

  • Lilly DK (2000) The meteorological development of large eddy simulation. In: Kerr RM, Kimura Y (eds) IUTAM symposium on developments in geophysical turbulence. Fluid mechanics and its applications, Chap 2, vol 58. Springer, Dordrecht, pp 5–18

    Google Scholar 

  • Liu L, Coops NC, Aven NW, Pang Y (2017) Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data. Remote Sens Environ 200:170–182

    Google Scholar 

  • Liu S, Meneveau C, Katz J (1994) On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. J Fluid Mech 275:83–119. https://doi.org/10.1017/S0022112094002296

    Article  Google Scholar 

  • Lu H, Rutland CJ, Smith LM (2008) A posteriori tests of one-equation LES modeling of rotating turbulence. Int J Mod Phys C 19(12):1949–1964

    Google Scholar 

  • Macdonald R (2000) Modelling the mean velocity profile in the urban canopy layer. Boundary-Layer Meteorol 97(1):25–45

    Google Scholar 

  • Mahaffee WF, Stoll R (2016) The ebb and flow of airborne pathogens: monitoring and use in disease management decisions. Phytopathology 106(5):420–431

    Google Scholar 

  • Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90(3):375–396

    Google Scholar 

  • Mahrt L, Thomas C (2016) Surface stress with non-stationary weak winds and stable stratification. Boundary-Layer Meteorol 159(1):3–21

    Google Scholar 

  • Margairaz F, Pardyjak ER, Calaf M (2020a) Surface thermal heterogeneities and the atmospheric boundary layer: the heterogeneity parameter. Boundary-Layer Meteorol 1–27. https://doi.org/10.1007/s10546-020-00544-7

  • Margairaz F, Pardyjak ER, Calaf M (2020b) Surface thermal heterogeneities and the atmospheric boundary layer: the relevance of dispersive fluxes. Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-020-00509-w

    Article  Google Scholar 

  • Maronga B, Raasch S (2013) Large-eddy simulations of surface heterogeneity effects on the convective boundary layer during the LITFASS-2003 experiment. Boundary-Layer Meteorol 146(1):17–44

    Google Scholar 

  • Mason P, Callen N (1986) On the magnitude of the subgrid-scale eddy coefficient in large-eddy simulations of turbulent channel flow. J Fluid Mech 162:439–462

    Google Scholar 

  • Mason PJ (1989) Large-eddy simulation of the convective atmospheric boundary layer. J Atmos Sci 46(11):1492–1516

    Google Scholar 

  • Mason PJ, Derbyshire SH (1990) Large-eddy simulation of the stably-stratified atmospheric boundary layer. Boundary-Layer Meteorol 53:117–162. https://doi.org/10.1007/BF00122467

    Article  Google Scholar 

  • Mason PJ, Thomson DJ (1992) Stochastic backscatter in large-eddy simulations of boundary layers. J Fluid Mech 242:51–78. https://doi.org/10.1017/S0022112092002271

    Article  Google Scholar 

  • Matheou G, Chung D (2014) Large-eddy simulation of stratified turbulence. Part ii: application of the stretched-vortex model to the atmospheric boundary layer. J Atmos Sci 71(12):4439–4460

    Google Scholar 

  • Mellado JP (2017) Cloud-top entrainment in stratocumulus clouds. Annu Rev Fluid Mech 49:145–169

    Google Scholar 

  • Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31(7):1791–1806

    Google Scholar 

  • Meneveau C, Katz J (2000) Scale-invariance and turbulence models for large-eddy simulation. Annu Rev Fluid Mech 32(1):1–32. https://doi.org/10.1146/annurev.fluid.32.1.1

    Article  Google Scholar 

  • Meneveau C, Lund TS, Cabot WH (1996) A Lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech 319:353–385. https://doi.org/10.1017/S0022112096007379

    Article  Google Scholar 

  • Métais O (1998) Large-eddy simulations of three-dimensional turbulent flows: geophysical applications. Springer, Dordrecht, pp 351–372

    Google Scholar 

  • Michioka T, Takimoto H, Sato A (2014) Large-eddy simulation of pollutant removal from a three-dimensional street canyon. Boundary-Layer Meteorol 150(2):259–275

    Google Scholar 

  • Miller NE, Stoll R (2013) Surface heterogeneity effects on regional-scale fluxes in the stable boundary layer: aerodynamic roughness length transitions. Boundary-Layer Meteorol 149(2):277–301

    Google Scholar 

  • Mirocha J, Lundquist J, Kosović B (2010) Implementation of a nonlinear subfilter turbulence stress model for large-eddy simulation in the advanced research WRF model. Mon Weather Rev 138(11):4212–4228

    Google Scholar 

  • Mirocha JD, Kosović B (2010) A large-eddy simulation study of the influence of subsidence on the stably stratified atmospheric boundary layer. Boundary-Layer Meteorol 134(1):1

    Google Scholar 

  • Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37:239–261

    Google Scholar 

  • Moeng CH (1984) A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J Atmos Sci 41(13):2052–2062. https://doi.org/10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2

    Article  Google Scholar 

  • Moeng CH, Sullivan PP (1994) A comparison of shear-and buoyancy-driven planetary boundary layer flows. J Atmos Sci 51(7):999–1022

    Google Scholar 

  • Moeng CH, Wyngaard JC (1988) Spectral analysis of large-eddy simulations of the convective boundary layer. J Atmos Sci 45(23):3573–3587

    Google Scholar 

  • Moeng CH, Wyngaard JC (1989) Evaluation of turbulent transport and dissipation closures in second-order modeling. J Atmos Sci 46(14):2311–2330. https://doi.org/10.1175/1520-0469(1989)046<2311:EOTTAD>2.0.CO;2

    Article  Google Scholar 

  • Moin P, Homsy G (2017) An appreciation of the life and work of William C. Reynolds (1933–2004). Annu Rev Fluid Mech 49(1):1–21. https://doi.org/10.1146/annurev-fluid-122414-034434

    Article  Google Scholar 

  • Moin P, Squires K, Cabot W, Lee S (1991) A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys Fluids A 3(11):2746–2757

    Google Scholar 

  • Monin A, Obukhov A (1954) Turbulent mixing in the atmospheric surface layer. Tr Akad Nauk SSSR Geofiz Inst 24(151):163–187

    Google Scholar 

  • Muñoz-EsTarza D, Kosović B, Mirocha J, van Beeck J (2014) Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models. Boundary-Layer Meteorol 153(3):409–440

    Google Scholar 

  • Nazarian N, Martilli A, Kleissl J (2018) Impacts of realistic urban heating, Part i: spatial variability of mean flow, turbulent exchange and pollutant dispersion. Boundary-Layer Meteorol 166(3):367–393

    Google Scholar 

  • Nieuwstadt F, Brost R (1986) The decay of convective turbulence. J Atmos Sci 43(6):532–546

    Google Scholar 

  • Nieuwstadt FT (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41(14):2202–2216

    Google Scholar 

  • Nieuwstadt FT, Mason PJ, Moeng CH, Schumann U (1993) Large-eddy simulation of the convective boundary layer: a comparison of four computer codes. In: Turbulent shear flows, vol 8. Springer, Berlin, pp 343–367

  • Niyogi D, Pyle P, Lei M, Arya SP, Kishtawal CM, Shepherd M, Chen F, Wolfe B (2011) Urban modification of thunderstorms: an observational storm climatology and model case study for the Indianapolis urban region. J Appl Meteorol Climatol 50(5):1129–1144

    Google Scholar 

  • Nugroho B, Hutchins N, Monty J (2013) Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness. Int J Heat Fluid Flow 41:90–102. https://doi.org/10.1016/j.ijheatfluidflow.2013.04.003

    Article  Google Scholar 

  • Pardyjak ER, Stoll R (2017) Improving measurement technology for the design of sustainable cities. Meas Sci Technol 28(9):092,001

    Google Scholar 

  • Patton EG, Shaw RH, Judd MJ, Raupach MR (1998) Large-eddy simulation of windbreak flow. Boundary-Layer Meteorol 87(2):275–307

    Google Scholar 

  • Patton EG, Sullivan PP, Moeng CH (2005) The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J Atmos Sci 62(7):2078–2097

    Google Scholar 

  • Patton EG, Sullivan PP, Shaw RH, Finnigan JJ, Weil JC (2016) Atmospheric stability influences on coupled boundary layer and canopy turbulence. J Atmos Sci 73(4):1621–1647

    Google Scholar 

  • Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comp Phys 10(2):252–271. https://doi.org/10.1016/0021-9991(72)90065-4

    Article  Google Scholar 

  • Philips D, Rossi R, Iaccarino G (2013) Large-eddy simulation of passive scalar dispersion in an urban-like canopy. J Fluid Mech 723:404–428

    Google Scholar 

  • Pino D, Jonker HJ, De Arellano JVG, Dosio A (2006) Role of shear and the inversion strength during sunset turbulence over land: characteristic length scales. Boundary-Layer Meteorol 121(3):537–556

    Google Scholar 

  • Piomelli U, Balaras E (2002) Wall-layer models for large-eddy simulation. Annu Rev Fluid Mech 34:349–374

    Google Scholar 

  • Piomelli U, Cabot WH, Moin P, Lee S (1991) Subgrid-scale backscatter in turbulent and transitional flows. Phys Fluids A 3(7):1766–1771. https://doi.org/10.1063/1.857956

    Article  Google Scholar 

  • Pope S (2000) Turbulent flows. Cambridge University Press, Cambridge

    Google Scholar 

  • Pope SB (2004) Ten questions concerning the large-eddy simulation of turbulent flows. New J Phys 6:35–35. https://doi.org/10.1088/1367-2630/6/1/035

    Article  Google Scholar 

  • Porté-Agel F (2004) A scale-dependent dynamic model for scalar transport in large-eddy simulations of the atmospheric boundary layer. Boundary-Layer Meteorol 112(1):81–105. https://doi.org/10.1023/B:BOUN.0000020353.03398.20

    Article  Google Scholar 

  • Porté-Agel F, Meneveau C, Parlange MB (2000) A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J Fluid Mech 415:261–284. https://doi.org/10.1017/S0022112000008776

    Article  Google Scholar 

  • Prandtl L (1925) 7. bericht über untersuchungen zur ausgebildeten turbulenz. ZAMM J Appl Math Mech Z Angew Math Mech 5(2):136–139. https://doi.org/10.1002/zamm.19250050212

    Article  Google Scholar 

  • Raasch S, Harbusch G (2001) An analysis of secondary circulations and their effects caused by small-scale surface inhomogeneities using large-eddy simulation. Boundary-Layer Meteorol 101(1):31–59

    Google Scholar 

  • Raasch S, Schröter M (2001) PALM—a large-eddy simulation model performing on massively parallel computers. Meteorol Z 10(5):363–372

    Google Scholar 

  • Rai RK, Berg LK, Kosović B, Haupt SE, Mirocha JD, Ennis BL, Draxl C (2019) Evaluation of the impact of horizontal grid spacing in terra incognita on coupled mesoscale-microscale simulations using the WRF framework. Mon Weather Rev 147(3):1007–1027

    Google Scholar 

  • Randall DA, Shao Q, Moeng CH (1992) A second-order bulk boundary-layer model. J Atmos Sci 49(20):1903–1923

    Google Scholar 

  • Raupach M (1992) Drag and drag partition on rough surfaces. Boundary-Layer Meteorol 60(4):375–395

    Google Scholar 

  • Raupach M, Finnigan J, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. In: Boundary-layer meteorology 25th anniversary volume, 1970–1995. Springer, pp 351–382

  • Richardson H, Basu S, Holtslag A (2013) Improving stable boundary-layer height estimation using a stability-dependent critical bulk Richardson number. Boundary-Layer Meteorol 148(1):93–109

    Google Scholar 

  • Sadique J, Yang XI, Meneveau C, Mittal R (2017) Aerodynamic properties of rough surfaces with high aspect-ratio roughness elements: effect of aspect ratio and arrangements. Boundary-Layer Meteorol 163(2):203–224

    Google Scholar 

  • Sagaut P (2006) Large eddy simulation for incompressible flows: an introduction, 3rd edn. Springer, Berlin

    Google Scholar 

  • Saiki EM, Moeng CH, Sullivan PP (2000) Large-eddy simulation of the stably stratified planetary boundary layer. Boundary-Layer Meteorol 95(1):1–30

    Google Scholar 

  • Salesky ST, Anderson W (2018) Buoyancy effects on large-scale motions in convective atmospheric boundary layers: implications for modulation of near-wall processes. J Fluid Mech 856:135–168

    Google Scholar 

  • Salesky ST, Chamecki M, Bou-Zeid E (2017) On the nature of the transition between roll and cellular organization in the convective boundary layer. Boundary-Layer Meteorol 163(1):41–68

    Google Scholar 

  • Sandström U, Van den Besselaar P (2018) Funding, evaluation, and the performance of national research systems. J Informetr 12(1):365–384

    Google Scholar 

  • Santos JM, Reis N, Castro I, Goulart EV, Xie ZT (2019) Using large-eddy simulation and wind-tunnel data to investigate peak-to-mean concentration ratios in an urban environment. Boundary-Layer Meteorol 172(3):333–350

    Google Scholar 

  • Schalkwijk J, Jonker HJ, Siebesma AP (2016) An investigation of the eddy-covariance flux imbalance in a year-long large-eddy simulation of the weather at Cabauw. Boundary-Layer Meteorol 160(1):17–39

    Google Scholar 

  • Schmidt H, Schumann U (1989) Coherent structure of the convective boundary layer derived from large-eddy simulations. J Fluid Mech 200:511–562

    Google Scholar 

  • Schumann U (1975) Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J Comp Phys 18(4):376–404. https://doi.org/10.1016/0021-9991(75)90093-5

    Article  Google Scholar 

  • Shao Y, Liu S, Schween JH, Crewell S (2013) Large-eddy atmosphere-land-surface modelling over heterogeneous surfaces: model development and comparison with measurements. Boundary-Layer Meteorol 148(2):333–356

    Google Scholar 

  • Shaw RH, Patton EG (2003) Canopy element influences on resolved-and subgrid-scale energy within a large-eddy simulation. Agric For Meteor 115(1–2):5–17

    Google Scholar 

  • Shaw RH, Schumann U (1992) Large-eddy simulation of turbulent flow above and within a forest. Boundary-Layer Meteorol 61(1–2):47–64

    Google Scholar 

  • Shen S, Leclerc MY (1995) How large must surface inhomogeneities be before they influence the convective boundary layer structure? A case study. Q J R Meteorol Soc 121(526):1209–1228

    Google Scholar 

  • Shepherd MJ (2005) A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact 9(12):1–27

    Google Scholar 

  • Shin HH, Dudhia J (2016) Evaluation of PBL parameterizations in WRF at subkilometer grid spacings: turbulence statistics in the dry convective boundary layer. Mon Weather Rev 144(3):1161–1177. https://doi.org/10.1175/MWR-D-15-0208.1

    Article  Google Scholar 

  • Shin HH, Hong SY (2015) Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon Weather Rev 143(1):250–271. https://doi.org/10.1175/MWR-D-14-00116.1

    Article  Google Scholar 

  • Siebesma AP, Soares PM, Teixeira J (2007) A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J Atmos Sci 64(4):1230–1248

    Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99–164. https://doi.org/10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2

    Article  Google Scholar 

  • Sorbjan Z (1997) Decay of convective turbulence revisited. Boundary-Layer Meteorol 82(3):503–517

    Google Scholar 

  • Sorbjan Z (2004) Large-eddy simulations of the baroclinic mixed layer. Boundary-Layer Meteorol 112(1):57–80

    Google Scholar 

  • Sorbjan Z (2007) A numerical study of daily transitions in the convective boundary layer. Boundary-Layer Meteorol 123(3):365–383

    Google Scholar 

  • Steeneveld G, Van de Wiel B, Holtslag A (2007) Diagnostic equations for the stable boundary layer height: evaluation and dimensional analysis. J Appl Meteorol Climatol 46(2):212–225

    Google Scholar 

  • Stevens B, Moeng CH, Ackerman AS, Bretherton CS, Chlond A, de Roode S, Edwards J, Golaz JC, Jiang H, Khairoutdinov M, Kirkpatrick MP, Lewellen DC, Lock A, Müller F, Stevens DE, Whelan E, Zhu P (2005) Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon Weather Rev 133(6):1443–1462. https://doi.org/10.1175/MWR2930.1

    Article  Google Scholar 

  • Stoll R, Porté-Agel F (2006a) Effect of roughness on surface boundary conditions for large-eddy simulation. Boundary-Layer Meteorol 118(1):169–187

    Google Scholar 

  • Stoll R, Porté-Agel F (2008) Large-eddy simulation of the stable atmospheric boundary layer using dynamic models with different averaging schemes. Boundary-Layer Meteorol 126(1):1–28

    Google Scholar 

  • Stoll R, Porté-Agel F (2006b) Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain. Water Resour Res 42(1):1–18. https://doi.org/10.1029/2005WR003989

    Article  Google Scholar 

  • Su HB, Shaw RH, Paw KT, Moeng CH, Sullivan PP (1998) Turbulent statistics of neutrally stratified flow within and above a sparse forest from large-eddy simulation and field observations. Boundary-Layer Meteorol 88(3):363–397

    Google Scholar 

  • Sullivan PP, Patton EG (2011) The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J Atmos Sci 68(10):2395–2415

    Google Scholar 

  • Sullivan PP, McWilliams JC, Moeng CH (1994) A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorol 71(3):247–276

    Google Scholar 

  • Sullivan PP, Moeng CH, Stevens B, Lenschow DH, Mayor SD (1998) Structure of the entrainment zone capping the convective atmospheric boundary layer. J Atmos Sci 55(19):3042–3064

    Google Scholar 

  • Sullivan PP, Weil JC, Patton EG, Jonker HJ, Mironov DV (2016) Turbulent winds and temperature fronts in large-eddy simulations of the stable atmospheric boundary layer. J Atmos Sci 73(4):1815–1840

    Google Scholar 

  • Sun J, Lenschow D, Burns S, Banta RM, Newsom R, Coulter R, Nappo CJ, Frasier S, Ince T, Balsley BB (2004) Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Boundary-Layer Meteorol 110(2):255–279

    Google Scholar 

  • Svensson G, Holtslag AA (2009) Analysis of model results for the turning of the wind and related momentum fluxes in the stable boundary layer. Boundary-Layer Meteorol 132(2):261–277

    Google Scholar 

  • Teixeira J, Stevens B, Bretherton C, Cederwall R, Doyle JD, Golaz JC, Holtslag AA, Klein S, Lundquist JK, Randall DA et al (2008) Parameterization of the atmospheric boundary layer: a view from just above the inversion. Bull Am Meteorol Soc 89(4):453–458

    Google Scholar 

  • Tennekes H, Lumley J (1972) A first course in turbulence. MIT Press, Cambridge

    Google Scholar 

  • Tomas J, Pourquie M, Jonker H (2016) Stable stratification effects on flow and pollutant dispersion in boundary layers entering a generic urban environment. Boundary-Layer Meteorol 159(2):221–239

    Google Scholar 

  • Tseng YH, Meneveau C, Parlange MB (2006) Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation. Environ Sci Technol 40(8):2653–2662

    Google Scholar 

  • van der Linden SJ, Edwards JM, van Heerwaarden CC, Vignon E, Genthon C, Petenko I, Baas P, Jonker HJ, van de Wiel BJ (2019) Large-eddy simulations of the steady wintertime antarctic boundary layer. Boundary-Layer Meteorol 173(2):165–192

    Google Scholar 

  • Voller VR, Porté-Agel F (2002) Moore’s law and numerical modeling. J Comp Phys 179(2):698–703

    Google Scholar 

  • Walko RL, Cotton WR, Pielke RA (1992) Large-eddy simulations of the effects of hilly terrain on the convective boundary layer. Boundary-Layer Meteorol 58(1–2):133–150. https://doi.org/10.1007/BF00120755

    Article  Google Scholar 

  • Walton A, Cheng A (2002) Large-eddy simulation of pollution dispersion in an urban street canyon-part ii: idealised canyon simulation. Atmos Environ 36(22):3615–3627

    Google Scholar 

  • Watanabe T (2004) Large-eddy simulation of coherent turbulence structures associated with scalar ramps over plant canopies. Boundary-Layer Meteorol 112(2):307–341

    Google Scholar 

  • Willingham D, Anderson W, Christensen KT, Barros J (2013) Turbulent boundary layer flow over transverse aerodynamic roughness transitions: induced mixing and flow characterization. Phys Fluids 26(025):111-1–111-16

    Google Scholar 

  • Wilson J (1988) A second-order closure model for flow through vegetation. Boundary-Layer Meteorol 42(4):371–392

    Google Scholar 

  • Wong VC, Lilly DK (1994) A comparison of two dynamic subgrid closure methods for turbulent thermal convection. Phys Fluids 6(2):1016–1023. https://doi.org/10.1063/1.868335

    Article  Google Scholar 

  • Wood D (1981) The growth of the internal layer following a step change in surface roughness. Report TN—FM 57, Department of Mechanical Engineering, Universty of Newcastle, Australia

  • Wyngaard J (2004) Toward numerical modeling in the terra incognita. J Atmos Sci 61:1816–1826

    Google Scholar 

  • Wyngaard J (2010) Turbulence in the atmosphere. Cambridge University Press, Cambridge

    Google Scholar 

  • Wyngaard JC, Brost RA (1984) Top-down and bottom-up diffusion of a scalar in the convective boundary layer. J Atmos Sci 41(1):102–112

    Google Scholar 

  • Wyngaard JC, Weil JC (1991) Transport asymmetry in skewed turbulence. Phys Fluids A 3(1):155–162

    Google Scholar 

  • Xie Z, Castro IP (2006) LES and RANS for turbulent flow over arrays of wall-mounted obstacles. Flow Turbul Combust 76(3):291

    Google Scholar 

  • Xie ZT (2011) Modelling street-scale flow and dispersion in realistic winds–towards coupling with mesoscale meteorological models. Boundary-Layer Meteorol 141(1):53–75

    Google Scholar 

  • Xie ZT, Castro IP (2009) Large-eddy simulation for flow and dispersion in urban streets. Atmos Environ 43(13):2174–2185

    Google Scholar 

  • Yaghoobian N, Kleissl J et al (2014) An improved three-dimensional simulation of the diurnally varying street-canyon flow. Boundary-Layer Meteorol 153(2):251–276

    Google Scholar 

  • Yamaguchi T, Randall DA (2012) Cooling of entrained parcels in a large-eddy simulation. J Atmos Sci 69(3):1118–1136

    Google Scholar 

  • Yan C, Huang WX, Miao SG, Cui GX, Zhang ZS (2017) Large-eddy simulation of flow over a vegetation-like canopy modelled as arrays of bluff-body elements. Boundary-Layer Meteorol 165(2):233–249

    Google Scholar 

  • Yang D, Shen L (2010) Direct-simulation-based study of turbulent flow over various waving boundaries. J Fluid Mech 650:131–180

    Google Scholar 

  • Yang J, Anderson W (2017) Numerical study of turbulent channel flow over surfaces with variable spanwise heterogeneities: topographically-driven secondary flows affect outer-layer similarity of turbulent length scales. Flow Turbul Combust 100(1):1–17. https://doi.org/10.1007/s10494-017-9839-5

    Article  Google Scholar 

  • Yang X, Sadique J, Mittal R, Meneveau C (2015) Integral wall model for large eddy simulations of wall-bounded turbulent flows. Phys Fluids 27(2):025,112

    Google Scholar 

  • Yue W, Parlange MB, Meneveau C, Zhu W, Van Hout R, Katz J (2007) Large-eddy simulation of plant canopy flows using plant-scale representation. Boundary-Layer Meteorol 124(2):183–203

    Google Scholar 

  • Zhang R, Wang G, Guo S, Zamora ML, Ying Q, Lin Y, Wang W, Hu M, Wang Y (2015) Formation of urban fine particulate matter. Chem Rev 115(10):3803–3855

    Google Scholar 

  • Zhu X, Iungo GV, Leonardi S, Anderson W (2017) Parametric study of urban-like topographic statistical moments relevant to a priori modelling of bulk aerodynamic parameters. Boundary-Layer Meteorol 162(2):231–253

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation Grants AGS-1660367 (R. Stoll and J. Gibbs) and PDM-1649067 and PDM-1712538 (M. Calaf) and the NOAA/Office of Oceanic and Atmospheric Research under NOAA–University of Oklahoma Cooperative Agreement NA11OAR4320072, U.S. Department of Commerce (J. Gibbs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Stoll.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoll, R., Gibbs, J.A., Salesky, S.T. et al. Large-Eddy Simulation of the Atmospheric Boundary Layer. Boundary-Layer Meteorol 177, 541–581 (2020). https://doi.org/10.1007/s10546-020-00556-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-020-00556-3

Keywords

Navigation