Skip to main content
Log in

Ejective and Sweeping Motions Above a Peatland and Their Role in Relaxed-Eddy-Accumulation Measurements and Turbulent Transport Modelling

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The three turbulent velocity components, water vapour (\(\text {H}_2\text {O}\)), carbon dioxide (\(\text {CO}_{2}\)), and methane (\(\text {CH}_{4}\)) concentration fluctuations are measured above a boreal peatland and analyzed using conditional sampling and quadrant analysis. The overarching question to be addressed is to what degree lower-order cumulant expansion methods describe transport efficiency and the relative importance of ejections and sweeps to momentum, \(\text {CH}_{4}\), \(\text {CO}_{2}\) and \(\text {H}_2\text {O}\) fluxes across a range of atmospheric flow regimes. The patchy peatland surface creates distinctly different source and sink distributions for the three scalars in space and time thereby adding to the uniqueness of the set-up. The measured and modelled fractional contributions to the momentum flux show that sweep events dominate over ejections in agreement with prior studies conducted in the roughness sublayer. For scalar fluxes, ejections dominate the turbulent fluxes over sweeps. While ejective motions persist longer for momentum transport, sweeping events persist longer for all three scalars. Third-order cumulant expansions describe many of the results detailed above, and the results are surprising given the highly non-Gaussian distribution of \(\text {CH}_{4}\) turbulent fluctuations. Connections between the asymmetric contributions of sweeps and ejections and the flux-transport term arising in scalar turbulent-flux-budget closure are derived and shown to agree reasonably well with measurements. The proposed model derived here is much simpler than prior structural models used to describe laboratory experiments. Implications of such asymmetric contributions on, (i) the usage of the now proliferating relaxed-eddy-accumulation method in turbulent flux measurements, (ii) the constant-flux assumption, and (iii) gradient-diffusion closure models are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ammann C, Meixner F (2002) Stability dependence of the relaxed eddy accumulation coefficient for various scalar quantities. J Geophys Res Atmos 107(D8):ACL7-1–ACL7-9

    Article  Google Scholar 

  • Andreas EL, Hill RJ, Gosz JR, Moore DI, Otto WD, Sarma AD (1998) Stability dependence of the eddy-accumulation coefficients for momentum and scalars. Boundary-Layer Meteorol 86(3):409–420

    Article  Google Scholar 

  • Antonia R (1981) Conditional sampling in turbulence measurement. Annu Rev Fluid Mech 13(1):131–156

    Article  Google Scholar 

  • Antonia R, Atkinson J (1973) High-order moments of Reynolds shear stress fluctuations in a turbulent boundary layer. J Fluid Mech 58(03):581–593

    Article  Google Scholar 

  • Baker J, Norman J, Bland W (1992) Field-scale application of flux measurement by conditional sampling. Agric For Meteorol 62(1–2):31–52

    Article  Google Scholar 

  • Baldocchi DD, Meyers TP (1988) Turbulence structure in a deciduous forest. Boundary-Layer Meteorol 43(4):345–364

    Article  Google Scholar 

  • Bash JO, Miller DR (2008) A relaxed eddy accumulation system for measuring surface fluxes of total gaseous mercury. J Atmos Ocean Technol 25(2):244–257

    Article  Google Scholar 

  • Beverland I, Moncrieff J, Oneill D, Hargreaves K, Milne R (1996) Measurement of methane and carbon dioxide fluxes from peatland ecosystems by the conditional-sampling technique. Q J R Meteorol Soc 122(532):819–838

    Article  Google Scholar 

  • Bowling D, Turnipseed A, Delany A, Baldocchi D, Greenberg J, Monson R (1998) The use of relaxed eddy accumulation to measure biosphere-atmosphere exchange of isoprene and other biological trace gases. Oecologia 116(3):306–315

    Article  Google Scholar 

  • Bowling DR, Baldocchi DD, Monson RK (1999) Dynamics of isotopic exchange of carbon dioxide in a tennessee deciduous forest. Global Biogeochem Cycles 13(4):903–922. https://doi.org/10.1029/1999GB900072

    Article  Google Scholar 

  • Businger JA, Oncley SP (1990) Flux measurement with conditional sampling. J Atmos Ocean Technol 7(2):349–352

    Article  Google Scholar 

  • Cantwell BJ (1981) Organized motion in turbulent flow. Annu Rev Fluid Mech 13(1):457–515

    Article  Google Scholar 

  • Cava D, Katul G, Scrimieri A, Poggi D, Cescatti A, Giostra U (2006) Buoyancy and the sensible heat flux budget within dense canopies. Boundary-Layer Meteorol 118(1):217–240

    Article  Google Scholar 

  • Christensen C, Hummelshøj P, Jensen N, Larsen B, Lohse C, Pilegaard K, Skov H (2000) Determination of the terpene flux from orange species and Norway spruce by relaxed eddy accumulation. Atmos Environ 34(19):3057–3067

    Article  Google Scholar 

  • Ciccioli P, Brancaleoni E, Frattoni M, Marta S, Brachetti A, Vitullo M, Tirone G, Valentini R (2003) Relaxed eddy accumulation, a new technique for measuring emission and deposition fluxes of volatile organic compounds by capillary gas chromatography and mass spectrometry. J Chromatogr A 985(1):283–296

    Article  Google Scholar 

  • Cobos DR, Baker JM, Nater EA (2002) Conditional sampling for measuring mercury vapor fluxes. Atmos Environ 36(27):4309–4321

    Article  Google Scholar 

  • Corrsin S (1975) Limitations of gradient transport models in random walks and in turbulence. Adv Geophys 18:25–60

    Article  Google Scholar 

  • Deardorff J (1978) Closure of second-and third-moment rate equations for diffusion in homogeneous turbulence. Phys Fluids 21(4):525–530

    Article  Google Scholar 

  • Fer I, McPhee MG, Sirevaag A (2004) Conditional statistics of the Reynolds stress in the under-ice boundary layer. Geophys Res Lett. https://doi.org/10.1029/2004GL020475

    Article  Google Scholar 

  • Finnigan J (1979) Turbulence in waving wheat II. Structure of momentum transfer. Boundary-Layer Meteorol 16:213–236

    Google Scholar 

  • Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32(1):519–571

    Article  Google Scholar 

  • Foken T (2006) 50 years of the Monin–Obukhov similarity theory. Boundary-Layer Meteorol 119(3):431–447

    Article  Google Scholar 

  • Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78(1–2):83–105

    Article  Google Scholar 

  • Francone C, Katul GG, Cassardo C, Richiardone R (2012) Turbulent transport efficiency and the ejection-sweep motion for momentum and heat on sloping terrain covered with vineyards. Agric For Meteorol 162:98–107

    Article  Google Scholar 

  • Frenkiel FN, Klebanoff PS (1967) Higher-order correlations in a turbulent field. Phys Fluids 10(3):507–520

    Article  Google Scholar 

  • Frenkiel FN, Klebanoff PS (1973) Probability distributions and correlations in a turbulent boundary layer. Phys Fluids 16(6):725–737

    Article  Google Scholar 

  • Gallagher M, Clayborough R, Beswick K, Hewitt C, Owen S, Moncrieff J, Pilegaard K (2000) Assessment of a relaxed eddy accumulation for measurements of fluxes of biogenic volatile organic compounds: study over arable crops and a mature beech forest. Atmos Environ 34(18):2887–2899

    Article  Google Scholar 

  • Gaman A, Rannik Ü, Aalto P, Pohja T, Siivola E, Kulmala M, Vesala T (2004) Relaxed eddy accumulation system for size-resolved aerosol particle flux measurements. J Atmos Ocean Technol 21(6):933–943

    Article  Google Scholar 

  • Gao W (1995) The vertical change of coefficient b, used in the relaxed eddy accumulation method for flux measurement above and within a forest canopy. Atmos Environ 29(17):2339–2347

    Article  Google Scholar 

  • Ghannam K, Duman T, Salesky ST, Chamecki M, Katul G (2017) The non-local character of turbulence asymmetry in the convective atmospheric boundary layer. Q J R Meteorol Soc 143(702):494–507

    Article  Google Scholar 

  • Graus M, Hansel A, Wisthaler A, Lindinger C, Forkel R, Hauff K, Klauer M, Pfichner A, Rappenglück B, Steigner D et al (2006) A relaxed-eddy-accumulation method for the measurement of isoprenoid canopy-fluxes using an online gas-chromatographic technique and PTR-MS simultaneously. Atmos Environ 40:43–54

    Article  Google Scholar 

  • Grönholm T, Aalto PP, Hiltunen V, Rannik Ü, Rinne J, Laakso L, Hyvönen S, Vesala T, Kulmala M (2007) Measurements of aerosol particle dry deposition velocity using the relaxed eddy accumulation technique. Tellus B 59(3):381–386

    Article  Google Scholar 

  • Held A, Patton E, Rizzo L, Smith J, Turnipseed A, Guenther A (2008) Relaxed eddy accumulation simulations of aerosol number fluxes and potential proxy scalars. Boundary-Layer Meteorol 129(3):451–468

    Article  Google Scholar 

  • Hensen A, Nemitz E, Flynn M, Blatter A, Jones S, Sørensen LL, Hensen B, Pryor S, Jensen B, Otjes R et al (2009) Inter-comparison of ammonia fluxes obtained using the relaxed eddy accumulation technique. Biogeosciences 6(11):2575–2588

    Article  Google Scholar 

  • Katsouvas GD, Helmis CG, Wang Q (2007) Quadrant analysis of the scalar and momentum fluxes in the stable marine atmospheric surface layer. Boundary-Layer Meteorol 124(3):335–360

    Article  Google Scholar 

  • Katul G, Albertson J (1998) An investigation of higher-order closure models for a forested canopy. Boundary-Layer Meteorol 89(1):47–74

    Article  Google Scholar 

  • Katul GG, Finkelstein PL, Clarke JF, Ellestad TG (1996) An investigation of the conditional sampling method used to estimate fluxes of active, reactive, and passive scalars. J Appl Meteorol 35(10):1835–1845

    Article  Google Scholar 

  • Katul G, Hsieh CI, Kuhn G, Ellsworth D, Nie D (1997a) Turbulent eddy motion at the forest-atmosphere interface. J Geophys Res Atmos 102(D12):13,409–13,421

    Article  Google Scholar 

  • Katul G, Kuhn G, Schieldge J, Hsieh CI (1997b) The ejection-sweep character of scalar fluxes in the unstable surface layer. Boundary-Layer Meteorol 83(1):1–26

    Article  Google Scholar 

  • Katul G, Poggi D, Cava D, Finnigan J (2006) The relative importance of ejections and sweeps to momentum transfer in the atmospheric boundary layer. Boundary-Layer Meteorol 120(3):367–375

    Article  Google Scholar 

  • Katul GG, Porporato A, Manes C, Meneveau C (2013) Co-spectrum and mean velocity in turbulent boundary layers. Phys Fluids 25(9):091,702

    Article  Google Scholar 

  • Katul GG, Li D, Liu H, Assouline S (2016) Deviations from unity of the ratio of the turbulent Schmidt to Prandtl numbers in stratified atmospheric flows over water surfaces. Phys Rev Fluids 1(3):034,401

    Article  Google Scholar 

  • Lamb B, Pierce T, Baldocchi D, Allwine E, Dilts S, Westberg H, Geron C, Guenther A, Klinger L, Harley P et al (1996) Evaluation of forest canopy models for estimating isoprene emissions. J Geophys Res Atmos 101(17):22,787–22,797

    Article  Google Scholar 

  • Launder B, Reece GJ, Rodi W (1975) Progress in the development of a Reynolds-stress turbulence closure. J Fluid Mech 68(03):537–566

    Article  Google Scholar 

  • Li D, Bou-Zeid E (2011) Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer. Boundary-Layer Meteorol 140(2):243–262

    Article  Google Scholar 

  • Li D, Katul GG, Zilitinkevich SS (2015) Revisiting the turbulent Prandtl number in an idealized atmospheric surface layer. J Atmos Sci 72(6):2394–2410

    Article  Google Scholar 

  • Lu S, Willmarth W (1973) Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J Fluid Mech 60(03):481–511

    Article  Google Scholar 

  • Maitani T, Ohtaki E (1987) Turbulent transport processes of momentum and sensible heat in the surface layer over a paddy field. Boundary-Layer Meteorol 40(3):283–293

    Article  Google Scholar 

  • Mammarella I, Peltola O, Nordbo A, Järvi L, Rannik Ü (2016) Quantifying the uncertainty of eddy covariance fluxes due to the use of different software packages and combinations of processing steps in two contrasting ecosystems. Atmos Meas Tech 9(10):4915

    Article  Google Scholar 

  • Mattson MD, Likens GE (1990) Air pressure and methane fluxes. Nature 347:718–719

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20(4):851–875

    Article  Google Scholar 

  • Milne R, Mennim A, Hargreaves K (2001) The value of the \(\beta \) coefficient in the relaxed eddy accumulation method in terms of fourth-order moments. Boundary-Layer Meteorol 101(3):359–373

    Article  Google Scholar 

  • Mochizuki T, Tani A, Takahashi Y, Saigusa N, Ueyama M (2014) Long-term measurement of terpenoid flux above a Larix kaempferi forest using a relaxed eddy accumulation method. Atmos Environ 83:53–61

    Article  Google Scholar 

  • Moriwaki R, Kanda M (2006) Local and global similarity in turbulent transfer of heat, water vapour, and CO\(\rm{_2}\) in the dynamic convective sublayer over a suburban area. Boundary-Layer Meteorol 120(1):163–179

    Article  Google Scholar 

  • Nagano Y, Tagawa M (1990) A structural turbulence model for triple products of velocity and scalar. J Fluid Mech 215:639–657

    Article  Google Scholar 

  • Nakagawa H, Nezu I (1977) Prediction of the contributions to the Reynolds stress from bursting events in open-channel flows. J Fluid Mech 80(01):99–128

    Article  Google Scholar 

  • Nemitz E, Flynn M, Williams P, Milford C, Theobald M, Blatter A, Gallagher M, Sutton M (2001) A relaxed eddy accumulation system for the automated measurement of atmospheric ammonia fluxes. Water Air Soil Pollut: Focus 1(5):189–202

    Article  Google Scholar 

  • Nie D, Kleindienst T, Arnts R, Sickles J (1995) The design and testing of a relaxed eddy accumulation system. J Geophys Res Atmos 100(D6):11,415–11,423

    Article  Google Scholar 

  • Nordbo A, Katul G (2013) A wavelet-based correction method for eddy-covariance high-frequency losses in scalar concentration measurements. Boundary-Layer Meteorol 146(1):81–102. https://doi.org/10.1007/s10546-012-9759-9

    Article  Google Scholar 

  • Obukhov A (1971) Turbulence in an atmosphere with a non-uniform temperature. Boundary-Layer Meteorol 2(1):7–29

    Article  Google Scholar 

  • Park C, Schade GW, Boedeker I (2010) Flux measurements of volatile organic compounds by the relaxed eddy accumulation method combined with a GC-FID system in urban Houston, Texas. Atmos Environ 44(21):2605–2614

    Article  Google Scholar 

  • Pattey E, Desjardins R, Rochette P (1993) Accuracy of the relaxed eddy-accumulation technique evaluated using CO\(\rm{_2}\) flux measurements. Boundary-Layer Meteorol 66(4):341–355

    Article  Google Scholar 

  • Peltola O, Mammarella I, Haapanala S, Burba G, Vesala T (2013) Field intercomparison of four methane gas analyzers suitable for eddy covariance flux measurements. Biogeosciences 10(6):3749–3765. https://doi.org/10.5194/bg-10-3749-2013

    Article  Google Scholar 

  • Poggi D, Katul G (2007) The ejection-sweep cycle over gentle hills covered with bare and forested surfaces. Boundary-Layer Meteorol 122:493–515

    Article  Google Scholar 

  • Poggi D, Katul G, Albertson J (2004a) Momentum transfer and turbulent kinetic energy budgets within a dense model canopy. Boundary-Layer Meteorol 111:589–614

    Article  Google Scholar 

  • Poggi D, Porporato A, Ridolfi L, Katul G, Albertson J (2004b) The effect of vegetation density on canopy sublayer turbulence. Boundary-Layer Meteorol 111:565–587

    Article  Google Scholar 

  • Priyadarshana P, Klewicki J (2004) Study of the motions contributing to the Reynolds stress in high and low Reynolds number turbulent boundary layers. Phys Fluids 16(12):4586–4600

    Article  Google Scholar 

  • Raupach M (1981) Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J Fluid Mech 108:363–382

    Article  Google Scholar 

  • Ren X, Sanders J, Rajendran A, Weber R, Goldstein A, Pusede S, Browne E, Min KE, Cohen R (2011) A relaxed eddy accumulation system for measuring vertical fluxes of nitrous acid. Atmos Meas Tech 4(10):2093–2103

    Article  Google Scholar 

  • Rinne J, Riutta T, Pihlatie M, Aurela M, Haapanala S, Tuovinen JP, Tuittila ES, Vesala T (2007) Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus B 59(3):449–457

    Article  Google Scholar 

  • Robinson SK (1991) Coherent motions in the turbulent boundary layer. Annu Rev Fluid Mech 23(1):601–639

    Article  Google Scholar 

  • Rotach MW (1993) Turbulence close to a rough urban surface part I: Reynolds stress. Boundary-Layer Meteorol 65(1):1–28

    Article  Google Scholar 

  • Ruppert J, Thomas C, Foken T (2006) Scalar similarity for relaxed eddy accumulation methods. Boundary-Layer Meteorol 120(1):39–63

    Article  Google Scholar 

  • Salesky ST, Chamecki M, Bou-Zeid E (2017) On the nature of the transition between roll and cellular organization in the convective boundary layer. Boundary-Layer Meteorol 163(1):41–68. https://doi.org/10.1007/s10546-016-0220-3

    Article  Google Scholar 

  • Schade GW, Goldstein AH (2001) Fluxes of oxygenated volatile organic compounds from a Ponderosa pine plantation. J Geophys Res Atmos 106(D3):3111–3123

    Article  Google Scholar 

  • Shaw RH, Tavangar J, Ward DP (1983) Structure of the Reynolds stress in a canopy layer. J Clim Appl Meteorol 22(11):1922–1931

    Article  Google Scholar 

  • Skov H, Brooks SB, Goodsite ME, Lindberg SE, Meyers TP, Landis MS, Larsen MR, Jensen B, McConville G, Christensen J (2006) Fluxes of reactive gaseous mercury measured with a newly developed method using relaxed eddy accumulation. Atmos Environ 40(28):5452–5463

    Article  Google Scholar 

  • Su HB, Shaw RH, Paw KT, Moeng CH, Sullivan PP (1998) Turbulent statistics of neutrally stratified flow within and above a sparse forest from large-eddy simulation and field observations. Boundary-Layer Meteorol 88(3):363–397

    Article  Google Scholar 

  • Thomas C, Foken T (2007) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Boundary-Layer Meteorol 123(2):317–337

    Article  Google Scholar 

  • Thomas C, Martin J, Goeckede M, Siqueira M, Foken T, Law B, Loescher H, Katul G (2008) Estimating daytime subcanopy respiration from conditional sampling methods applied to multi-scalar high frequency turbulence time series. Agric For Meteorol 148(8):1210–1229

    Article  Google Scholar 

  • Tsai JL, Tsuang BJ, Kuo PH, Tu CY, Chen CL, Hsueh MT, Lee CS, Yao MH, Hsueh ML (2012) Evaluation of the relaxed eddy accumulation coefficient at various wetland ecosystems. Atmos Environ 60:336–347

    Article  Google Scholar 

  • Variano EA, Cowen EA (2013) Turbulent transport of a high-Schmidt-number scalar near an air-water interface. J Fluid Mech 731:259–287

    Article  Google Scholar 

  • Wallace JM (2016) Quadrant analysis in turbulence research: history and evolution. Annu Rev Fluid Mech 48:131–158

    Article  Google Scholar 

  • Wallace JM, Eckelmann H, Brodkey RS (1972) The wall region in turbulent shear flow. J Fluid Mech 54(01):39–48

    Article  Google Scholar 

  • Walter BP, Heimann M (2000) A process-based, climate-sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate. Global Biogeochem Cycles 14(3):745–765

    Article  Google Scholar 

  • Wang L, Li D, Gao Z, Sun T, Guo X, Bou-Zeid E (2014) Turbulent transport of momentum and scalars above an urban canopy. Boundary-Layer Meteorol 150(3):485–511

    Article  Google Scholar 

  • Watanabe T (2004) Large-eddy simulation of coherent turbulence structures associated with scalar ramps over plant canopies. Boundary-Layer Meteorol 112(2):307–341

    Article  Google Scholar 

  • Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ Eng Sci 22(1):73–94. https://doi.org/10.1089/ees.2005.22.73

    Article  Google Scholar 

  • Willmarth W, Lu S (1972) Structure of the Reynolds stress near the wall. J Fluid Mech 55(01):65–92

    Article  Google Scholar 

  • Wyngaard JC, Moeng CH (1992) Parameterizing turbulent diffusion through the joint probability density. Boundary-Layer Meteorol 60(1):1–13

    Article  Google Scholar 

  • Yue W, Meneveau C, Parlange MB, Zhu W, van Hout R, Katz J (2007) A comparative quadrant analysis of turbulence in a plant canopy. Water Resour Res 43:W05422. https://doi.org/10.1029/2006WR005583

    Article  Google Scholar 

  • Zahn E, Dias NL, Araújo A, Sá LD, Sörgel M, Trebs I, Wolff S, Manzi A (2016) Scalar turbulent behavior in the roughness sublayer of an amazonian forest. Atmos Chem Phys 16(17):11,349–11,366

    Article  Google Scholar 

Download references

Acknowledgements

G.K. acknowledges support from the National Science Foundation (NSF-EAR-1344703, NSF-DGE-1068871), and the U.S. Department of Energy (DOE) through the office of Biological and Environmental Research (BER) Terrestrial Ecosystem Science (TES) Program (DE-SC0011461). T.V., O.P., and T.G. acknowledge support from the Academy of Finland Center of Excellence (Project Nos. 272041 and 118780) and Academy Professor projects (Nos. 1284701 and 1282842), ICOS-Finland (Project No. 281255) and CARB-ARC (Project No. 286190) funded by the Academy of Finland and the AtMath project funded by University of Helsinki. S.L. acknowledges support from the Academy of Finland Academy Research Fellow Project (Nos. 296116 and 307192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olli Peltola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katul, G., Peltola, O., Grönholm, T. et al. Ejective and Sweeping Motions Above a Peatland and Their Role in Relaxed-Eddy-Accumulation Measurements and Turbulent Transport Modelling. Boundary-Layer Meteorol 169, 163–184 (2018). https://doi.org/10.1007/s10546-018-0372-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-018-0372-4

Keywords

Navigation