Skip to main content
Log in

A hinge-based aligner for fast, large-scale assembly of microfluidic chips

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Microfluidics has shown its vitality in scientific research. But the lack of fast and straightforward approaches for aligning chip and easy-to-control on-chip valve still prevent microfluidic chips from becoming powerful commercial products. This work presents an aligner based on hinge structures, which we call a “hinge aligner”, for aligning microfluidic chips. Two flat chip holders are connected by a connecting rod so that the chip holders can rotate relative to each other along the connecting rod, in the way a hinge works. The two chip holders contain pre-designed recesses for placing two chips which can align chips with 20 μm resolution. Meanwhile, with this hinge aligner, we can easily implement a fully sealed on-chip valve, which can prevent aqueous liquids from leaking even at 80 °C for 30 min. The real immunoassay result shows aligned microfluidic chips can detect protein with improved reproducibility in both high and low concentration of biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • A.K. Au, W. Huynh, L.F. Horowitz, A. Folch, Angew. Chem. Int. Ed. 55, 3862–3881 (2016)

    Article  Google Scholar 

  • S.N. Bhatia, D.E. Ingber, Nat. Biotechnol. 32, 760–772 (2014)

    Article  Google Scholar 

  • A. Chen, T. Pan, Biomicrofluidics 5, 046505 (2011)

    Article  Google Scholar 

  • S. Cheng, Y. Jin, N. Wang, F. Cao, W. Zhang, W. Bai, W. Zheng, X. Jiang, Adv. Mater. 29, 1700171 (2017)

    Article  Google Scholar 

  • C.D. Chin, V. Linder, S.K. Sia, Lab Chip 12, 2118–2134 (2012)

    Article  Google Scholar 

  • Y. Ding, L. Hong, B. Nie, K.S. Lam, T. Pan, Lab Chip 11, 1464–1469 (2011)

    Article  Google Scholar 

  • X. Fang, H. Chen, S. Yu, X. Jiang, J. Kong, Anal. Chem. 83, 690–695 (2010a)

    Article  Google Scholar 

  • X. Fang, Y. Liu, J. Kong, X. Jiang, Anal. Chem. 82, 3002–3006 (2010b)

    Article  Google Scholar 

  • Q. Feng, J. Liu, X. Li, Q. Chen, J. Sun, X. Shi, B. Ding, H. Yu, Y. Li, X. Jiang, Small 13, 1603109 (2017)

    Article  Google Scholar 

  • B. Hu, J. Li, L. Mou, Y. Liu, J. Deng, W. Qian, J. Sun, R. Cha, X. Jiang, Lab Chip 13, 2225–2234 (2017)

    Article  Google Scholar 

  • D. Huh, G.A. Hamilton, D.E. Ingber, Trends Cell Biol. 21, 745–754 (2011)

    Article  Google Scholar 

  • C. Iliescu, H. Taylor, M. Avram, J. Miao, S. Franssila, Biomicrofluidics 6, 016505 (2012)

    Article  Google Scholar 

  • J.Y. Kim, J.Y. Baek, K.A. Lee, S.H. Lee, Sensor. Actuat. A- Phys. 119, 593–598 (2005)

    Article  Google Scholar 

  • S. Kipper, L. Frolov, O. Guy, M. Pellach, Y. Glick, A. Malichi, B. Knisbacher, E. Barbiro-Michaely, Y. Yavets-Chen, E.Y. Levanon, Lab Chip 17, 557–566 (2017)

    Article  Google Scholar 

  • S. Kumar, S. Kumar, M.A. Ali, P. Anand, V.V. Agrawal, R. John, S. Maji, B.D. Malhotra, Biotechnol. J. 8, 1267–1279 (2013)

    Article  Google Scholar 

  • M. Lake, C. Narciso, K. Cowdrick, T. Storey, S. Zhang, J. Zartman, D. Hoelzle, Protocol Exch. (2015). https://doi.org/10.1038/protex.2015.069

  • Y. Lei, L. Tang, Y. Xie, Y. Xianyu, L. Zhang, P. Wang, Y. Hamada, K. Jiang, W. Zheng, X. Jiang, Nat. Commun. 8, 15130 (2017)

    Article  Google Scholar 

  • X. Li, Z.T.F. Yu, D. Geraldo, S. Weng, N. Alve, W. Dun, A. Kini, K. Patel, R. Shu, F. Zhang, Rev. Sci. Instrum. 86, 075008 (2015)

    Article  Google Scholar 

  • J. Lu, W. Liao, Y. Tung, J. Micromech. Microeng. 22, 075006 (2012)

    Article  Google Scholar 

  • A. Manz, D.J. Harrison, E.M. Verpoorte, J.C. Fettinger, A. Paulus, H. Lüdi, H.M. Widmer, J. Chromatogr. A 593, 253–258 (1992)

    Article  Google Scholar 

  • D. Mark, S. Haeberle, G. Roth, F. von Stetten, R. Zengerle, Chem. Soc. Rev. 39, 1153–1182 (2010)

    Article  Google Scholar 

  • A.W. Martinez, S.T. Phillips, G.M. Whitesides, Proc. Natl. Acad. Sci. U. S. A. 105, 19606–19611 (2008)

    Article  Google Scholar 

  • S. K. Mitra, and S. Chakraborty, CRC Press, 2011, 319–365

  • L. Mou, X. Jiang, Adv. Healthc. Mater. 6, 1601403 (2017)

    Article  Google Scholar 

  • M. Mullenborn, H. Dirac, J.W. Petersen, S. Bouwstra, Sensor. Actuat. A- Phys. 52, 121–125 (1996)

    Article  Google Scholar 

  • P.N. Nge, C.I. Rogers, A.T. Woolley, Chem. Rev. 113, 2550–2583 (2013)

    Article  Google Scholar 

  • D. Sabourin, D. Snakenborg, M. Dufva, J. Micromech. Microeng. 19, 035021 (2009)

    Article  Google Scholar 

  • R. Sivakumarasamy, K. Nishiguchi, A. Fujiwara, D. Vuillaume, N. Clement, Anal. Methods UK 6, 97–101 (2014)

    Article  Google Scholar 

  • J. Sun, Y. Xianyu, X. Jiang, Chem. Soc. Rev. 43, 6239–6253 (2014)

    Article  Google Scholar 

  • D. Therriault, S.R. White, J.A. Lewis, Nat. Mater. 2, 265–271 (2003)

    Article  Google Scholar 

  • A.J. Tudos, G.A.J. Besselink, R.B.M. Schasfoort, Lab Chip 1, 83–95 (2001)

    Article  Google Scholar 

  • M.A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Science 288, 113–116 (2000)

    Article  Google Scholar 

  • D.B. Weibel, M. Kruithof, S. Potenta, S.K. Sia, A. Lee, G.M. Whitesides, Anal. Chem. 77, 4726–4733 (2005)

    Article  Google Scholar 

  • G.M. Whitesides, Nature 442, 368–373 (2006)

    Article  Google Scholar 

  • Y.N. Xia, G.M. Whitesides, Annu. Rev. Mater. Sci. 28, 153–184 (1998)

    Article  Google Scholar 

  • B. You, P.-C. Chen, J. Guy, P. Datta, D.E. Nikitopoulos, S.A. Soper, M.C. Murphy, ASME, Int. Mech. Eng. Congr. Expo. 2006, 51–56 (2006)

    Google Scholar 

  • Y. Zhang, L. Zhang, J. Sun, Y. Liu, X. Ma, S. Cui, L. Ma, J. Xi, X. Jiang, Anal. Chem. 86, 7057–7062 (2014)

    Article  Google Scholar 

  • W. Zheng, R. Huang, B. Jiang, Y. Zhao, W. Zhang, X. Jiang, Small 12, 2022–2034 (2016)

    Article  Google Scholar 

  • X. Zhou, L. Lau, W.W.L. Lam, S.W.N. Au, B. Zheng, Anal. Chem. 79, 4924–4930 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the National Key R&D Program of China (2017YFA0205901), the National Natural Science Foundation of China (21535001, 81730051, 21761142006) the Chinese Academy of Sciences (QYZDJ-SSW-SLH039, 121D11KYSB20170026, XDA16020902) and for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyu Jiang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Additional supporting information including the ANSYS simulation result and design of the microfluidic chip and the hinge. In addition, results of detection ten blank sample are presented in the Table S3. (DOCX 812 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, L., Hu, B., Zhang, J. et al. A hinge-based aligner for fast, large-scale assembly of microfluidic chips. Biomed Microdevices 21, 69 (2019). https://doi.org/10.1007/s10544-019-0404-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0404-y

Keywords

Navigation