Skip to main content
Log in

A paper-based photothermal array using Parafilm to analyze hyperthermia response of tumour cells under local gradient temperature

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Temperature is a critical extrinsic physical parameter that determines cell fate. Hyperthermia therapy has become an efficient treatment for tumor ablation. To understand the response of tumor cells under thermal shocks, we present a paper-based photothermal array that can be conveniently coupled with commercial 96-well cell culture plates. This paper chip device was fabricated in one step using Parafilm® and Kimwipers® based on a heat lamination strategy. Liquid was completely adsorbed and confined within the cellulose fibres of hydrophilic regions. Then, Prussian blue nanoparticles (PB NPs) as the photothermal initiator were introduced into the loading wells, and thermal energy was generated via near infrared (NIR) laser irradiation. After assembling the paper device with a 96-well plate, the temperature of each well could be individually controlled by varying the loading amount of PB NPs and laser irradiation time. As a proof-of-concept study, the effects of local thermal shocks on HeLa cells were investigated using MTT cell viability assay and Live/Dead cell staining. The variation of cell viability could be monitored in situ with controllable temperature elevation. The proposed paper photothermal array loaded with thermal initiators represents an enabling tool for investigating the hyperthermia responses of biological cells. Moreover, the facile fabrication technique for paper patterning is advantageous for customizing high-throughput microfluidic paper-based analytical devices (μPADs) with extremely low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • K. Abe, K. Suzuki, D. Citterio, Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal. Chem. 80, 6928–6934 (2008)

    Article  Google Scholar 

  • G. Andocs, M.U. Rehman, Q.L. Zhao, Y. Tabuchi, M. Kanamori, T. Kondo, Comparison of biological effects of modulated electro-hyperthermia and conventional heat treatment in human lymphoma U937 cells. Cell Death Discovery 2, 16039 (2016)

    Article  Google Scholar 

  • Z.H. Bao, X.R. Liu, Y.D. Liu, H.Z. Liu, K. Zhao, Near-infrared light-responsive inorganic nanomaterials for photothermal therapy. Asian J. Pharm. Sci. 11, 349–364 (2016)

    Article  Google Scholar 

  • K.W. Baumann, J.M. Baust, K.K. Snyder, J.G. Baust, R.G. Van Buskirk, Characterization of pancreatic cancer cell thermal response to heat ablation or Cryoablation. Technol. Cancer Res. Treat. 16, 393–405 (2017)

    Article  Google Scholar 

  • H.M. Beere, "The stress of dying": The role of heat shock proteins in the regulation of apoptosis. J. Cell Sci. 117, 2641–2651 (2004)

    Article  Google Scholar 

  • A. Bettaieb, D.A. Averill-Bates, Thermotolerance induced at a mild temperature of 40°C alleviates heat shock-induced ER stress and apoptosis in HeLa cells. Biochim. Biophys. Acta, Mol. Cell Res. 1853, 52–62 (2015)

    Article  Google Scholar 

  • C. Brace, Thermal tumor ablation in clinical use. IEEE Pulse 2, 28–38 (2011)

    Article  Google Scholar 

  • S. Chatterjee, T.F. Burns, Targeting heat shock proteins in cancer: A promising therapeutic approach. Int. J. Mol. Sci. 18, 1978 (2017)

    Article  Google Scholar 

  • E.A. Craig, B.D. Gambill, R.J. Nelson, Heat-shock proteins - molecular chaperones of protein biogenesis. Microbiol. Rev. 57, 402–414 (1993)

    Google Scholar 

  • M.J. Cziesielski, Y.J. Liew, G.X. Cui, S. Schmidt-Roach, S. Campana, C. Marondedze, M. Aranda, Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proc. R. Soc. B 285, 20172654 (2018)

    Article  Google Scholar 

  • R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827 (1997)

    Article  Google Scholar 

  • W. Dungchai, O. Chailapakul, C.S. Henry, A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136, 77–82 (2011)

    Article  Google Scholar 

  • X.E. Fang, S.S. Wei, J.L. Kong, Paper-based microfluidics with high resolution, cut on a glass fiber membrane for bioassays. Lab Chip 14, 911–915 (2014)

    Article  Google Scholar 

  • G.L. Fu, W. Liu, S.S. Feng, X.L. Yue, Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chem. Commun. 48, 11567–11579 (2012)

    Article  Google Scholar 

  • G.L. Fu, W. Liu, Y.Y. Li, Y.S. Jin, L.D. Jiang, X.L. Liang, S.S. Feng, Z.F. Dai, Magnetic Prussian blue nanoparticles for targeted photothermal therapy under magnetic resonance imaging guidance. Bioconjug. Chem. 25, 1655–1663 (2014)

    Article  Google Scholar 

  • Y. He, W.B. Wu, J.Z. Fu, Rapid fabrication of paper-based microfluidic analytical devices with desktop stereolithography 3D printer. RSC Adv. 5, 2694–2701 (2015a)

    Article  Google Scholar 

  • Y. He, Y. Wu, J.Z. Fu, W.B. Wu, Fabrication of paper-based microfluidic analysis devices: A review. RSC Adv. 5, 78109–78127 (2015b)

    Article  Google Scholar 

  • H.C. Huang, K. Rege, J.J. Heys, Spatiotemporal temperature distribution and Cancer cell death in response to extracellular hyperthermia induced by gold Nanorods. ACS Nano 4, 2892–2900 (2010)

    Article  Google Scholar 

  • M. Hussong, C. Kaehler, M. Kerick, C. Grimm, A. Franz, B. Timmermann, F. Welzel, J. Isensee, T. Hucho, S. Krobitsch, M.R. Schweiger, The bromodomain protein BRD4 regulates splicing during heat shock. Nucleic Acids Res. 45, 382–394 (2017)

    Article  Google Scholar 

  • D. Jaque, L.M. Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J.L. Plaza, E. Martín Rodrígueza, J. García Soléa, Nanoparticles for photothermal therapies. Nanoscale 6, 9494–9530 (2014)

    Article  Google Scholar 

  • H.H. Kampinga, J.F. Brunsting, G.J.J. Stege, P.W.J.J. Burgman, A.W.T. Konings, Thermal protein denaturation and protein aggregation in cells made Thermotolerant by various chemicals - role of heat-shock proteins. Exp. Cell Res. 219, 536–546 (1995)

    Article  Google Scholar 

  • B. Kong, J.H. Seog, L.M. Graham, S.B. Lee, Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine (London, U. K.) 6, 929–941 (2011)

    Article  Google Scholar 

  • J.R. Lepock, Cellular effects of hyperthermia: Relevance to the minimum dose for thermal damage. Int. J. Hyperth. 19, 252–266 (2003)

    Article  Google Scholar 

  • X. Li, D.R. Ballerini, W. Shen, A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics 6, 11301–1130113 (2012)

    Article  Google Scholar 

  • P. Lisowski, P.K. Zarzycki, Microfluidic paper-based analytical devices (muPADs) and micro total analysis systems (muTAS): Development, applications and future trends. Chromatographia 76, 1201–1214 (2013)

    Article  Google Scholar 

  • X.J. Liu, B. Li, F.F. Fu, K.B. Xu, R.J. Zou, Q. Wang, B. Zhang, Z. Chen, J. Hu, Facile synthesis of biocompatible cysteine-coated CuS nanoparticles with high photothermal conversion efficiency for cancer therapy. Dalton Trans. 43, 11709–11715 (2014)

    Article  Google Scholar 

  • A.W. Martinez, S.T. Phillips, B.J. Wiley, M. Gupta, G.M. Whitesides, FLASH: A rapid method for prototyping paper-based microfluidic devices. Lab Chip 8, 2146–2150 (2008)

    Article  Google Scholar 

  • R.I. Morimoto, M.P. Kline, D.N. Bimston, J.J. Cotto, The heat-shock response: Regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem. 32, 17–29 (1997)

    Google Scholar 

  • T. Nagaya, Y. Nakamura, K. Sato, T. Harada, P.L. Choyke, H. Kobayashi, Near infrared photoimmunotherapy of B-cell lymphoma. Mol. Oncol. 10, 1404–1414 (2016)

    Article  Google Scholar 

  • R. Ota, K. Yamada, K. Suzuki, D. Citterio, Quantitative evaluation of analyte transport on microfluidic paper-based analytical devices (μPADs). Analyst 143, 643–653 (2018)

    Article  Google Scholar 

  • K. Richter, M. Haslbeck, J. Buchner, The heat shock response: Life on the verge of death. Mol. Cell 40, 253–266 (2010)

    Article  Google Scholar 

  • A. Samali, C.I. Holmberg, L. Sistonen, S. Orrenius, Thermotolerance and cell death are distinct cellular responses to stress: Dependence on heat shock proteins. FEBS Lett. 461, 306–310 (1999)

    Article  Google Scholar 

  • Y. Sameenoi, P.N. Nongkai, S. Nouanthavong, C.S. Henry, D. Nacapricha, One-step polymer screen-printing for microfluidic paper-based analytical device (μPAD) fabrication. Analyst 139, 6580–6588 (2014)

    Article  Google Scholar 

  • M. Sher, R. Zhuang, U. Demirci, W. Asghar, Paper-based analytical devices for clinical diagnosis: Recent advances in the fabrication techniques and sensing mechanisms. Expert. Rev. Mol. Diagn. 17, 351–366 (2017)

    Article  Google Scholar 

  • M. Shokouhimehr, E.S. Soehnlen, J.H. Hao, M. Griswold, C. Flask, X.D. Fan, J.P. Basilion, S. Basu, S.P.D. Huang, Dual purpose Prussian blue nanoparticles for cellular imaging and drug delivery: A new generation of T-1-weighted MRI contrast and small molecule delivery agents. J. Mater. Chem. 20, 5251–5259 (2010)

    Article  Google Scholar 

  • N.M. Templeman, S. LeBlanc, S.F. Perry, S. Currie, Linking physiological and cellular responses to thermal stress: Beta-adrenergic blockade reduces the heat shock response in fish. J. Comp. Physiol. B. 184, 719–728 (2014)

    Article  Google Scholar 

  • P. Xue, J.N. Bao, Y.F. Wu, Y.L. Zhang, Y.J. Kang, Magnetic Prussian blue nanoparticles for combined enzyme-responsive drug release and photothermal therapy. RSC Adv. 5, 28401–28409 (2015)

    Article  Google Scholar 

  • P. Xue, L.H. Sun, Q. Li, L. Zhang, Z.G. Xu, C.M. Li, Y.J. Kang, PEGylated magnetic Prussian blue nanoparticles as a multifunctional therapeutic agent for combined targeted photothermal ablation and pH triggered chemotherapy of tumour cells. J. Colloid Interface Sci. 509, 384–394 (2018)

    Article  Google Scholar 

  • Y. Yang, E. Noviana, M.P. Nguyen, B.J. Geiss, D.S. Dandy, C.S. Henry, Paper-based microfluidic devices: Emerging themes and applications. Anal. Chem. 89, 71–91 (2017)

    Article  Google Scholar 

  • A.K. Yetisen, M.S. Akram, C.R. Lowe, Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13, 2210–2251 (2013)

    Article  Google Scholar 

  • L.L. Zou, H. Wang, B. He, L.J. Zeng, T. Tan, H.Q. Cao, et al., Current approaches of photothermal therapy in treating cancer metastasis with Nanotherapeutics. Theranostics 6, 762–772 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

P. X., L. Z. and Y. K. acknowledge the Fundamental Research Funds for Central Universities (XDJK2018C010, XDJK2017C001, XDJK2016A010 and SWU115059), a start-up grant from Southwest University (SWU116032) and National Natural Science Foundation of China (51703186, 31671037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuejun Kang or Peng Xue.

Electronic supplementary material

ESM 1

(DOCX 273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Sun, L., Hou, M. et al. A paper-based photothermal array using Parafilm to analyze hyperthermia response of tumour cells under local gradient temperature. Biomed Microdevices 20, 68 (2018). https://doi.org/10.1007/s10544-018-0311-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0311-7

Keywords

Navigation