Skip to main content
Log in

Rapid homogeneous endothelialization of high aspect ratio microvascular networks

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Microvascularization of an engineered tissue construct is necessary to ensure the nourishment and viability of the hosted cells. Microvascular constructs can be created by seeding the luminal surfaces of microfluidic channel arrays with endothelial cells. However, in a conventional flow-based system, the uniformity of endothelialization of such an engineered microvascular network is constrained by mass transfer of the cells through high length-to-diameter (L/D) aspect ratio microchannels. Moreover, given the inherent limitations of the initial seeding process to generate a uniform cell coating, the large surface-area-to-volume ratio of microfluidic systems demands long culture periods for the formation of confluent cellular microconduits. In this report, we describe the design of polydimethylsiloxane (PDMS) and poly(glycerol sebacate) (PGS) microvascular constructs with reentrant microchannels that facilitates rapid, spatially homogeneous endothelial cell seeding of a high L/D (2 cm/35 μm; > 550:1) aspect ratio microchannels. MEMS technology was employed for the fabrication of a monolithic, elastomeric, reentrant microvascular construct. Isotropic etching and PDMS micromolding yielded a near-cylindrical microvascular channel array. A ‘stretch – seed – seal’ operation was implemented for uniform incorporation of endothelial cells along the entire microvascular area of the construct yielding endothelialized microvascular networks in less than 24 h. The feasibility of this endothelialization strategy and the uniformity of cellularization were established using confocal microscope imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • M. Abdelgawad, M.W.L. Watson, E.W.K. Young, J.M. Mudrik, M.D. Ungrin, A.R. Wheeler, Lab Chip 8, 1379 (2008)

    Article  Google Scholar 

  • J. Borenstein, H. Terai, K. King, E.J. Weinberg, M.R. Kaazempur-Mofrad, J.P. Vacanti, Biomed. Microdevices 4, 167 (2002)

    Article  Google Scholar 

  • J. Borenstein, M. Tupper, P. Mack, E. Weinberg, A. Khalil, J. Hsiao, G. García-Cardeña, Biomed. Microdevices 12, 71 (2010)

    Article  Google Scholar 

  • K.J.L. Burg, W.D. Holder, C.R. Culberson, R.J. Beiler, K.G. Greene, A.B.. Loebsack, W.D. Roland, P. Eiselt, D.J. Mooney, C.R. Halberstadt, J. Biomed. Mater. Res. 52, 576 (2000)

  • J. Camp, T. Stokol, M. Shuler, Biomed. Microdevices 10, 179 (2008)

    Article  Google Scholar 

  • F. Christina, R.K.-M. Mohammad, B. Jeffrey, P.V. Joseph, L. Robert, W. Yadong, Tissue Eng. 11, 302 (2005)

    Article  Google Scholar 

  • K.A. Deniz, L. Chang, J. Micromech. Microeng. 10, 80 (2000)

    Article  Google Scholar 

  • M.B. Esch, D.J. Post, M.L. Shuler, T. Stokol, Tissue Eng. A 17, 2965 (2011)

    Article  Google Scholar 

  • J. Gao, A.E. Ensley, R.M. Nerem, Y. Wang, J. Biomed. Mater. Res. Part A. 83A, 1070 (2007)

    Article  Google Scholar 

  • D.M. Hallow, R.A. Seeger, P.P. Kamaev, G.R. Prado, M.C. LaPlaca, M.R. Prausnitz, Biotechnol. Bioeng. 99, 846 (2008)

    Article  Google Scholar 

  • K. Haubert, T. Drier, D. Beebe, Lab Chip 6, 1548 (2006)

    Article  Google Scholar 

  • W. He, Z. Ma, W.E. Teo, Y.X. Dong, P.A. Robless, T.C. Lim, S. Ramakrishna, J. Biomed. Mater. Res. Part A. 90A, 205 (2009)

    Article  Google Scholar 

  • S.-h. Hsu, I.j. Tsai, D.-j. Lin, D.C. Chen, Med. Eng. Phys. 27, 267 (2005)

    Article  Google Scholar 

  • A. Ito, K. Ino, M. Hayashida, T. Kobayashi, H. Matsunuma, H. Kagami, M. Ueda, H. Honda, Tissue Eng. 11, 1553 (2005)

    Article  Google Scholar 

  • A. Khademhosseini, K.Y. Suh, S. Jon, G. Eng, J. Yeh, G.-J. Chen, R. Langer, Anal. Chem. 76, 3675 (2004)

    Article  Google Scholar 

  • M. Kim, D.J. Hwang, H. Jeon, K. Hiromatsu, C.P. Grigoropoulos, Lab Chip 9, 311 (2009)

    Article  Google Scholar 

  • K.R. King, C.C.J. Wang, M.R. Kaazempur-Mofrad, J.P. Vacanti, J.T. Borenstein, Adv. Mater. 16, 2007 (2004)

    Article  Google Scholar 

  • J.N. Lee, X. Jiang, D. Ryan, G.M. Whitesides, Langmuir 20, 11684 (2004)

    Article  Google Scholar 

  • N. Naik, V. Kumar, E. L. Chaikof and M. G. Allen. Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference. 2011 (2011). doi: 10.1109/IEMBS.2011.6090076.

  • M.M.-G. Pasic, W. von Segesser, L. Odermatt, B. Lachat, M. Turina, Eur. J. Cardio-Thoracic Surg. 10, 372 (1996)

    Article  Google Scholar 

  • J. Rosano, N. Tousi, R. Scott, B. Krynska, V. Rizzo, B. Prabhakarpandian, K. Pant, S. Sundaram, M. Kiani, Biomed. Microdevices 11, 1051 (2009)

    Article  Google Scholar 

  • M. Shin, K. King, K. Matsuda, O. Ishii, H. Terai, E. Weinberg, M. Kaazempur-Mofrad, J. Borenstein, M. Detmar, J. Vacanti, Biomed. Microdevices 8, 271 (2006)

    Article  Google Scholar 

  • Y. Wang, G.A. Ameer, B.J. Sheppard, R. Langer, Nat. Biotechnol. 20, 602 (2002)

    Article  Google Scholar 

  • G.J. Wang, C.L. Chen, S.H. Hsu, Y.L. Chiang, Microsyst. Technol. 12, 120 (2005)

    Article  Google Scholar 

  • W. Wu, R.A. Allen, Y. Wang, Nat. Med. 18, 1148 (2012)

    Article  Google Scholar 

  • H.M. Wyss, D.L. Blair, J.F. Morris, H.A. Stone, D.A. Weitz, Phys. Rev. E 74, 061402 (2006)

    Article  Google Scholar 

  • Y.F. Yap, D. Li, J.C. Chai, J. Phys. Conf. Ser. 34, 448 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This project was supported by grants from the NIH. D.H-P. was supported by a fellowship from the Juvenile Diabetes Research Foundation. The fabrication was performed at Microsystems Technology Laboratories (MTL) at Massachusetts Institute of Technology (MIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elliot L. Chaikof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, N., Hanjaya-Putra, D., Haller, C.A. et al. Rapid homogeneous endothelialization of high aspect ratio microvascular networks. Biomed Microdevices 17, 83 (2015). https://doi.org/10.1007/s10544-015-9990-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-015-9990-5

Keywords

Navigation