Skip to main content
Log in

Dry-contact microelectrode membranes for wireless detection of electrical phenotypes in neonatal mouse hearts

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Continuous monitoring of aberrant electrical rhythms during heart injury and repair requires prolonged data acquisition. We hereby developed a wearable microelectrode membrane that could be adherent to the chest of neonatal mice for in situ wireless recording of electrocardiogram (ECG) signals. The novel dry-contact membrane with a meshed parylene-C pad adjacent to the microelectrodes and the expandable meandrous strips allowed for varying size of the neonates. The performance was evaluated at the system level; specifically, the ECG signals (μV) acquired from the microelectrodes underwent two-stage amplification, band-pass filtering, and optical data transmission by an infrared Light Emitting Diode (LED) to the data-receiving unit. The circuitry was prototyped on a printed circuit board (PCB), consuming less than 300 μW, and was completely powered by an inductive coupling link. Distinct P waves, QRS complexes, and T waves of ECG signals were demonstrated from the non-pharmacologically sedated neonates at ~600 beats per minutes. Thus, we demonstrate the feasibility of both real-time and wireless monitoring cardiac rhythms in a neonatal mouse (17–20 mm and <1 g) via dry-contact microelectrode membrane; thus, providing a basis for diagnosing aberrant electrical conduction in animal models of cardiac injury and repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • O. Bergmann, R.D. Bhardwaj, S. Bernard, S. Zdunek, F. Barnabe-Heider, S. Walsh, J. Frisen, Evidence for cardiomyocyte renewal in humans. Science 324(5923), 98–102 (2009). doi:10.1126/science.1164680

    Article  Google Scholar 

  • K. Bersell, S. Arab, B. Haring, B. Kuhn, Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138(2), 257–270 (2009). doi:10.1016/j.cell.2009.04.060

    Article  Google Scholar 

  • A.L. Bui, G.C. Fonarow, Home monitoring for heart failure management. J. Am. Coll. Cardiol. 59(2), 97–104 (2012)

    Article  Google Scholar 

  • H. Cao, S. Rao, S.-j. Tang, H.F. Tibbals, S. Spechler, J.-C. Chiao, Batteryless implantable dual-sensor capsule for esophageal reflux monitoring. Gastrointest. Endosc. 77(4), 649–653 (2013)

    Article  Google Scholar 

  • H. Cao, F. Yu, Y. Zhao, X. Zhang, J. Tai, J. Lee . . . N. C. Chi. Wearable multi-channel microelectrode membranes for elucidating electrophysiological phenotypes of injured myocardium. Integr Biol (2014)

  • Y.M. Chi, T.-P. Jung, G. Cauwenberghs, Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev. Biomed. Eng. 3, 106–119 (2010)

    Article  Google Scholar 

  • P.C. Hsieh, V.F. Segers, M.E. Davis, C. MacGillivray, J. Gannon, J.D. Molkentin, R.T. Lee, Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat. Med. 13(8), 970–974 (2007). doi:10.1038/nm1618

    Article  Google Scholar 

  • G.N. Huang, J.E. Thatcher, J. McAnally, Y. Kong, X. Qi, W. Tan, J.A. Hill, C/EBP transcription factors mediate epicardial activation during heart development and injury. Science 338(6114), 1599–1603 (2012)

    Article  Google Scholar 

  • K. Kikuchi, J.E. Holdway, A.A. Werdich, R.M. Anderson, Y. Fang, G.F. Egnaczyk, K.D. Poss, Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464(7288), 601–605 (2010)

    Article  Google Scholar 

  • S. Kulandavelu, D. Qu, N. Sunn, J. Mu, M.Y. Rennie, K.J. Whitelely … S.L. Adamson. Embryonic and neonatal phenotyping of genetically engineered mice. ILAR J. 47(2), 103–117 (2006). doi: 10.1093/ilar.47.2.s103

  • C.L. Lien, M.R. Harrison, T.L. Tuan, V.A. Starnes, Heart repair and regeneration: recent insights from zebrafish studies. Wound Repair Regen. 20(5), 638–646 (2012)

    Article  Google Scholar 

  • J. Narula, N. Haider, R. Virmani, T.G. DiSalvo, F.D. Kolodgie, R.J. Hajjar, B.-A. Khaw, Apoptosis in myocytes in end-stage heart failure. N. Engl. J. Med. 335(16), 1182–1189 (1996)

    Article  Google Scholar 

  • G. Olivetti, R. Abbi, F. Quaini, J. Kajstura, W. Cheng, J.A. Nitahara, S. Krajewski, Apoptosis in the failing human heart. N. Engl. J. Med. 336(16), 1131–1141 (1997)

    Article  Google Scholar 

  • E.R. Porrello, A.I. Mahmoud, E. Simpson, J.A. Hill, J.A. Richardson, E.N. Olson, H.A. Sadek, Transient regenerative potential of the neonatal mouse heart. Science 331(6020), 1078–1080 (2011)

    Article  Google Scholar 

  • P. Sun, Y. Zhang, F. Yu, E. Parks, A. Lyman, Q. Wu, T.K. Hsiai, Micro-electrocardiograms to study post-ventricular amputation of zebrafish heart. Ann. Biomed. Eng. 37(5), 890–901 (2009). doi:10.1007/s10439-009-9668-3

    Article  Google Scholar 

  • F. Yu, R. Li, E. Parks, W. Takabe, T.K. Hsiai, Electrocardiogram signals to assess zebrafish heart regeneration: implication of long QT intervals. Ann. Biomed. Eng. 38(7), 2346–2357 (2010). doi:10.1007/s10439-010-9993-6

    Article  Google Scholar 

  • F. Yu, Y. Zhao, J. Gu, K.L. Quigley, N.C. Chi, Y.-C. Tai, T.K. Hsiai, Flexible microelectrode arrays to interface epicardial electrical signals with intracardial calcium transients in zebrafish hearts. Biomed. Microdevices 14(2), 357–366 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The studies were supported by the National Institutes of Health R01HL-083015 (T.K.H.), R01HD069305-01 (N.C.C., T.K.H.), R01HL111437 (T.K.H.), and R01HL096121(C.L.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzung K. Hsiai.

Additional information

Yu Zhao, Hung Cao and Tyler Beebe contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Video 1

Adult zebrafish are placed in a jacket with 4 electrodes proximal to the heart, similar to the neonatal mouse design in Fig 1. ECG signals are acquired by the electrode, and transmitted to the monitor where signals can be monitored in real-time. (MP4 108175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Cao, H., Beebe, T. et al. Dry-contact microelectrode membranes for wireless detection of electrical phenotypes in neonatal mouse hearts. Biomed Microdevices 17, 40 (2015). https://doi.org/10.1007/s10544-014-9912-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-014-9912-y

Keywords

Navigation