Skip to main content
Log in

Superparamagnetic microrobots: fabrication by two-photon polymerization and biocompatibility

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This work presents the fabrication and controlled actuation of swimming microrobots made of a magnetic polymer composite (MPC) consisting of 11-nm-diameter magnetite (Fe3O4) nanoparticles and photocurable resin (SU-8). Two-photon polymerization (TPP) is used to fabricate the magnetic microstructures. The material properties and the cytotoxicity of the MPC with different nanoparticle concentrations are characterized. The live/dead staining tests indicate that MPC samples with varied concentrations, up to 10 vol.%, have negligible cytotoxicity after 24 h incubation. Fabrication parameters of MPC with up to 4 vol.% were investigated. We demonstrate that the helical microdevices made of 2 vol.% MPC were capable of performing corkscrew motion in water applying weak uniform rotating magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • R.A. Anderson, H.C. Berg, Bacteria swim by rotating their flagellar filaments. Nature 245, 380–382 (1973)

    Article  Google Scholar 

  • M. Colombo, S. Carregal-Romero, M.F. Casula, L. Gutierrez, M.P. Morales, I.B. Bohm, J.T. Heverhagen, D. Prosperi, W.J. Parak, Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41, 4306–4334 (2012)

    Article  Google Scholar 

  • A. Deepu, V.V.R. Sai, S. Mukherji, Simple surface modification techniques for immobilization of biomolecules on SU-8. J. Mater. Sci. 20, 25–28 (2009)

    Google Scholar 

  • D.L. Fan, Z.Z. Yin, R. Cheong, F.Q. Zhu, R.C. Cammarata, C.L. Chien, A. Levchenko, Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires. Nat. Nanotechnol. 5, 545–551 (2010)

    Article  Google Scholar 

  • E. Frances, J. Burdan, A. Cutino, K.E. Green, A new sustained delivery technology for posterior eye disease. Expert Opin. Drug Deliv. 5, 1039–1046 (2008)

    Article  Google Scholar 

  • A. Ghosh, P. Fischer, Controlled propulsion of artificial magnetic nano-structured propellers. Nano Lett. 9, 2243–2245 (2009)

    Article  Google Scholar 

  • M. Hagiwara, T. Kawahara, Y. Yamanishi, T. Masuda, L. Feng, F. Arai, On-chip magnetically actuated robot with ultrasonic vibration for single cell manipulations. Lab Chip 11, 2049–2054 (2011)

    Article  Google Scholar 

  • J. Kim, H.S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I.C. Song, W.K. Moon, T. Hyeon, Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. Int. Ed. 47, 8438–8441 (2008)

    Article  Google Scholar 

  • A.H. Lu, E.L. Salabas, F. Schuth, Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222–1244 (2007)

    Article  Google Scholar 

  • S. Martel, M. Mohammadi, O. Felfoul, Z. Lu, P. Pouponneau, Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int. J. Robot. Res. 28, 571–582 (2009)

    Article  Google Scholar 

  • Y.F. Mei, A.A. Solovev, S. Sanchez, O.G. Schmidt, Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chem. Soc. Rev. 40, 2109–2119 (2011)

    Article  Google Scholar 

  • B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010)

    Article  Google Scholar 

  • G.A. Ozin, I. Manners, S. Fournier-Bidoz, A. Arsenault, Dream Nanomachines. Adv. Mater. 17, 3011–3018 (2005)

    Article  Google Scholar 

  • S.H. Park, D.Y. Yang, K.S. Lee, Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices. Laser Photonics Rev. 3, 1–11 (2009)

    Article  Google Scholar 

  • C. Peters, O. Ergeneman, B. J. Nelson, C. Hierold, Pushing the limits of photo-curable SU-8-based superparamagnetic polymer composites, Proc. Int. Conf. on Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS) (Barcelona, 2013), pp 2676–2679

  • K.E. Peyer, L. Zhang, B.J. Nelson, Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5, 1259–1272 (2013a)

    Article  Google Scholar 

  • K.E. Peyer, S. Tottori, F. Qiu, L. Zhang, B.J. Nelson, Magnetic helical micromachines. Chem. Eur. J. 19, 28–38 (2013b)

    Article  Google Scholar 

  • E.M. Purcell, Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977)

    Article  Google Scholar 

  • F.M. Qiu, L. Zhang, S. Tottori, K. Marquardt, K. Krawczyk, A. Franco-Obregon, B.J. Nelson, Bio-inspired microrobots: the first intimate contact with cells. Mater. Today 15, 463 (2012)

    Article  Google Scholar 

  • S. Schuerle, S. Pane, E. Pellicer, J. Sort, M.D. Baro, B.J. Nelson, Helical and tubular lipid microstructures that are electroless-coated with CoNiReP for wireless magnetic manipulation. Small 8, 1498–1502 (2012)

    Article  Google Scholar 

  • J.J. Shi, D. Ahmed, X. Mao, S.C.S. Lin, A. Lawit, T.J. Huang, Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 9, 2890–2895 (2009)

    Article  Google Scholar 

  • C.E. Sing, L. Schmid, M.F. Schneider, T. Franke, A. Alexander-Katz, Controlled surface-induced flows from the motion of self-assembled colloidal walkers. Proc. Natl. Acad. Sci. U. S. A. 107, 535–540 (2010)

    Article  Google Scholar 

  • K.M. Sivaraman, C. Kellenberger, S. Pane, O. Ergeneman, T. Luhmann, N.A. Luechinger, H. Hall, W.J. Stark, B.J. Nelson, Porous polysulfone coatings for enhanced drug delivery. Biomed. Microdevices 14, 603–612 (2012)

    Article  Google Scholar 

  • A.A. Solovev, W. Xi, D.H. Gracias, S.M. Harazim, C. Deneke, S. Sanchez, O.G. Schmidt, Self-propelled nanotools. ACS Nano 6, 1751–1756 (2012)

    Article  Google Scholar 

  • M. Suter, O. Ergeneman, J. Zurcher, C. Moitzi, S. Pane, T. Rudin, S.E. Pratsinis, B.J. Nelson, C. Hierold, A photopatternable superparamagnetic nanocomposite: material characterization and fabrication of microstructures. Sensors Actuat. B Chem. 156, 433–443 (2011a)

    Article  Google Scholar 

  • M. Suter, O. Ergeneman, J. Zurcher, S. Schmid, A. Camenzind, B.J. Nelson, C. Hierold, Superparamagnetic photocurable nanocomposite for the fabrication of microcantilevers. J. Micromech. Microeng. 21, 025023 (2011b)

    Article  Google Scholar 

  • M. Suter, Photopatternable superparamagnetic nanocomposite for the fabrication of microstructures, Ph.D. dissertation, ETH Zurich, (2012)

  • Y. Tian, Y.L. Zhang, J.F. Ku, Y. He, B.B. Xu, Q.D. Chen, H. Xia, H.B. Sun, High performance magnetically controllable microturbines. Lab Chip 10, 2902–2905 (2010)

    Article  Google Scholar 

  • S. Tottori, L. Zhang, F.M. Qiu, K.K. Krawczyk, A. Franco-Obregon, B.J. Nelson, Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv. Mater. 24, 811–816 (2012)

    Article  Google Scholar 

  • J. Wang, Cargo-towing synthetic nanomachines: towards active transport in microchip devices. Lab Chip 12, 1944–1950 (2012)

    Article  Google Scholar 

  • H. Xia, J.A. Wang, Y. Tian, Q.D. Chen, X.B. Du, Y.L. Zhang, Y. He, H.B. Sun, Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization. Adv. Mater. 22, 3204–3207 (2010)

    Article  Google Scholar 

  • L. Zhang, J.J. Abbott, L.X. Dong, B.E. Kratochvil, D. Bell, B.J. Nelson, Artificial bacterial flagella: fabrication and magnetic control. Appl. Phys. Lett. 94, 064107 (2009a)

    Article  Google Scholar 

  • L. Zhang, J.J. Abbott, L. Dong, K.E. Peyer, B.E. Kratochvil, H. Zhang, C. Bergeles, B.J. Nelson, Characterizing the swimming properties of artificial bacterial flagella. Nano Lett. 9, 3663–3667 (2009b)

    Article  Google Scholar 

  • Y.L. Zhang, Q.D. Chen, H. Xia, H.B. Sun, Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today 5, 435–448 (2010a)

    Article  Google Scholar 

  • L. Zhang, K.E. Peyer, B.J. Nelson, Artificial bacterial flagella for micromanipulation. Lab Chip 10, 2203–2215 (2010b)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Eszter Barthazy and Elisabeth Müller (EMEZ at ETH Zurich) for the TEM-images, the technical support from the FIRST lab at ETH Zurich. Funding for this research is provided by Swiss National Science Foundation (SNSF), project number 130069 and the ETH Zurich (TH-28 06–3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 119 kb)

(WMV 2520 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suter, M., Zhang, L., Siringil, E.C. et al. Superparamagnetic microrobots: fabrication by two-photon polymerization and biocompatibility. Biomed Microdevices 15, 997–1003 (2013). https://doi.org/10.1007/s10544-013-9791-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-013-9791-7

Keywords

Navigation