Skip to main content
Log in

Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Airways of the peripheral lung are prone to closure at low lung volumes. Deficiency or dysfunction of pulmonary surfactant during various lung diseases compounds this event by destabilizing the liquid lining of small airways and giving rise to occluding liquid plugs in airways. Propagation of liquid plugs in airways during inflation of the lung exerts large mechanical forces on airway cells. We describe a microfluidic model of small airways of the lung that mimics airway architecture, recreates physiologic levels of pulmonary pressures, and allows studying cellular response to repeated liquid plug propagation events. Substantial cellular injury happens due to the propagation of liquid plugs devoid of surfactant. We show that addition of a physiologic concentration of a clinical surfactant, Survanta, to propagating liquid plugs protects the epithelium and significantly reduces cell death. Although the protective role of surfactants has been demonstrated in models of a propagating air finger in liquid-filled airways, this is the first time to study the protective role of surfactants in liquid plugs where fluid mechanical stresses are expected to be higher than in air fingers. Our parallel computational simulations revealed a significant decrease in mechanical forces in the presence of surfactant, confirming the experimental observations. The results support the practice of providing exogenous surfactant to patients in certain clinical settings as a protective mechanism against pathologic flows. More importantly, this platform provides a useful model to investigate various surface tension-mediated lung diseases at the cellular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • C. Alonso, T. Alig et al., More than a monolayer: relating lung surfactant structure and mechanics to composition. Biophys. J. 87, 4188–4202 (2004)

    Article  Google Scholar 

  • R.L. Auten, R.H. Watkins et al., Surfactant apoprotein A (SP-A) is synthetized in airway cells. Am. J. Respir. Cell Mol. Biol. 3, 491–496 (1990)

    Google Scholar 

  • S. Bian, C.F. Tai et al., Experimental study of flow fields in an airway closure model. J. Fluid Mech. 647, 391–402 (2010)

    Article  MATH  Google Scholar 

  • A.M. Bilek, K.C. Dee et al., Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. J. Appl. Physiol. 94, 770–783 (2003)

    Article  Google Scholar 

  • F. Blank, B.M. Rothen-Rutishauser et al., An optimized in vitro model of the respiratory tract wall to study particle cell interactions. J. Aerosol Med. 19, 392–405 (2006)

    Article  Google Scholar 

  • R. Boucher, Regulation of airway surface liquid volume by human airway epithelia. Pflügers Arch. Eur. J. Physiol. 445, 495–498 (2003)

    Google Scholar 

  • K.J. Cassidy, D. Halpern et al., Surfactant effects in model airway closure experiments. J. Appl. Physiol. 87, 415–427 (1999)

    Google Scholar 

  • K.J. Cassidy, N. Gavriely et al., Liquid plug flow in straight and bifurcating tubes. J. Biomech. Eng. 123, 580–589 (2001)

    Article  Google Scholar 

  • E. D’Angelo, M. Pecchiari et al., Low-volume ventilation causes peripheral airway injury and increased airway resistance in normal rabbits. J. Appl. Physiol. 92, 949–956 (2002)

    Google Scholar 

  • H.S. Davis, A. Liu et al., Motion driven by surface-tension gradients in a tube lining. J. Fluid Mech. 62, 737–751 (1974)

    Article  MATH  Google Scholar 

  • N.J. Douville, P. Zamankhan et al., Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model. Lab Chip 11, 609–619 (2011)

    Article  Google Scholar 

  • G. Enhorning, Surfactant in airway disease. Chest 133, 975–980 (2008)

    Article  Google Scholar 

  • G. Enhorning, B.A. Holm, Disruption of pulmonary surfactant’s ability to maintain openness of a narrow tube. J. Appl. Physiol. 74, 2922–2927 (1993)

    Google Scholar 

  • X. Fang, Y. Song et al., Contribution of CFTR to apical-basolateral fluid transport in cultured human alveolar epithelial type II cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L242–L249 (2006)

    Article  Google Scholar 

  • J.L. Fisher, S.S. Margulies, Modeling the effect of stretch and plasma membrane tension on Na+/K+-ATPase activity in alveolar epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 292, L40–L53 (2007)

    Article  Google Scholar 

  • B. Frank, S. Garoff, Temporal and spatial development of surfactant self-assemblies controlling spreading of surfactant solutions. Langmuir 11, 4333–4340 (1995)

    Article  Google Scholar 

  • H. Fujioka, J.B. Grotberg, The steady propagation of a surfactant-laden liquid plug in a two-dimensional channel. Phys. Fluids 17, 082102 (2005)

    Article  MathSciNet  Google Scholar 

  • H. Fujioka, S. Takayama et al., Unsteady propagation of a liquid plug in a liquid-lined straight tube. Phys. Fluids 20, 062104 (2008)

    Article  Google Scholar 

  • S.N. Ghadiali, D.P. Gaver III, Biomechanics of liquid–epithelium interactions in pulmonary airways. Respir. Physiol. Neurobiol. 163, 232–243 (2008)

    Article  Google Scholar 

  • J.B. Grotberg, Respiratory fluid mechanics and transport processes. Ann. Rev. Biomed. Eng. 3, 421–457 (2001)

    Article  Google Scholar 

  • A. Günther, C. Siebert et al., Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema. Am. J. Respir. Crit. Care Med. 153, 176–184 (1996)

    Google Scholar 

  • J.J. Haitsma, P.J. Papadakos et al., Surfactant therapy for acute lung injury/acute respiratory distress syndrome. Curr. Opin. Crit. Care 10, 18–22 (2004)

    Article  Google Scholar 

  • S.B. Hall, M.S. Bermel et al., Approximation in the measurement of surface tension with the oscillating bubble surfactometer. J. Appl. Physiol. 75, 468–477 (1993)

    Google Scholar 

  • D. Halpern, J.B. Grotberg, Surfactant effects on fluid-elastic instabilities of liquid-lined flexible tubes: a model of airway closure. J. Biomech. Eng. 115, 271–277 (1993)

    Article  Google Scholar 

  • D. Halpern, J.L. Bull et al., The effect of airway wall motion on surfactant delivery. J. Biomech. Eng. 126, 410–419 (2004)

    Article  Google Scholar 

  • M. Heila, A.L. Hazela et al., The mechanics of airway closure. Respir. Physiol. Neurobiol. 163, 214–221 (2008)

    Article  Google Scholar 

  • J. Hohlfeld, H. Fabel et al., The role of pulmonary surfactant in obstructive airways disease. Eur. Respir. J. 10, 482–491 (1997)

    Article  Google Scholar 

  • P.D. Howell, S.L. Waters et al., The propagation of a liquid bolus along a liquid-lined flexible tube. J. Fluid Mech. 406, 309–335 (2000)

    Article  MATH  Google Scholar 

  • D. Huh, H. Fujioka et al., Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. PNAS 104, 18886–18891 (2007)

    Article  Google Scholar 

  • V. Idone, C. Tam et al., Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis. J. Cell Biol. 180, 905–914 (2008)

    Article  Google Scholar 

  • M. Jain, J.I. Sznajder, Bench to bed-side review: distal airways in acute respiratory distress syndrome. Crit. Care 11, 206 (2007)

    Article  Google Scholar 

  • R.D. Kamm, R.C. Schroter, Is airway closure caused by a liquid film instability? Respir. Physiol. 75, 141–156 (1989)

    Article  Google Scholar 

  • P.T. Macklem, The physiology of small airways. Am. J. Respir. Crit. Care Med. 157, S181–S183 (1998)

    Google Scholar 

  • R.J. Mason, Surfactant synthesis, secretion, and function in alveoli and small airways. Respir 51(Suppl. 1), 3–9 (1987)

    Article  Google Scholar 

  • P.L. McNeil, M. Terasaki, Coping with the inevitable: how cells repair a torn surface membrane. Nat. Cell Biol. 3, E124–E129 (2001)

    Article  Google Scholar 

  • D.D. Nalayanda, C. Puleo et al., An open-access microfluidic model for lung-specific functional studies at an air-liquid interface. Biomed. Microdev. 11, 1081–1089 (2009)

    Article  Google Scholar 

  • A. Pettenazzo, A. Jobe et al., Clearance of surfactant phosphatidylcholine via the upper airways in rabbits. J. Appl. Physiol. 65, 2151–2155 (1998)

    Google Scholar 

  • A. Podgorski, L. Gradon, Function of the pulmonary surfactant in the clearance of respiratory bronchiles: a mathematical model. Chem. Eng. Commun. 110, 143–162 (1991)

    Article  Google Scholar 

  • B.M. Rothen-Rutishauser, S.G. Kiama et al., A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am. J. Respir. Cell Mol. Biol. 32, 281–289 (2005)

    Article  Google Scholar 

  • S. Schürch, H. Bachofen et al., A captive bubble method reproduces the in situ behavior of lung surfactant monolayers. J. Appl. Physiol. 67, 2389–2396 (1989)

    Google Scholar 

  • V. Taskar, J. John et al., Surfactant dysfunction makes lungs vulnerable to repetitive collapse and reexpansion. Am. J. Respir. Crit. Care Med. 155, 313–320 (1997)

    Google Scholar 

  • H. Tavana, D. Huh et al., Microfluidics, lung surfactant, and respiratory disorders. Lab Med. 40, 203–209 (2009)

    Article  Google Scholar 

  • H. Tavana, C.-H. Kuo et al., Dynamics of liquid plugs of buffer and surfactant solutions in a micro-engineered pulmonary airway model. Langmuir 26, 3744–3752 (2010)

    Article  Google Scholar 

  • D.J. Tschumperlin, S.S. Margulies, Equibiaxial deformation-induced injury of alveolar epithelial cells in vitro. Am. J. Physiol. Lung Cell. Mol. Physiol. 275, 1173–1183 (1998)

    Google Scholar 

  • N.E. Vlahakis, M.A. Schroeder et al., Deformation-induced lipid trafficking in alveolar epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 280, L938–L946 (2001)

    Google Scholar 

  • H.H. Wei, S.W. Benintendi et al., Cycle-induced flow and transport in a model alveolar liquid lining. J. Fluid Mech. 483, 1–36 (2003)

    Article  MATH  Google Scholar 

  • E.R. Weibel, D.M. Gomez, Architecture of the human lung: use of quantitative methods establishes fundamental relations between size and number of lung structures. Science 24, 577–585 (1962)

    Article  Google Scholar 

  • B.R. Wiggs, C. Bosken et al., A model of airway narrowing in asthma and chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 145, 1251–1258 (1992)

    Google Scholar 

  • D.F. Willson, P.R. Chess et al., Surfactant for pediatric acute lung injury. Pediatr. Clin. N. Am. 55, 545–575 (2008)

    Article  Google Scholar 

  • D. Yager, J.P. Butler et al., Amplification of airway constriction due to liquid filling of airway interstices. J. Appl. Physiol. 66, 2873–2884 (1989)

    Article  Google Scholar 

  • D. Yager, R.D. Kamm et al., Airway wall liquid: sources and role as an amplifier of bronchoconstriction. Chest 107(Suppl. 3), 105S–110S (1995)

    Article  Google Scholar 

  • H.C. Yalcin, S.F. Perry et al., Influence of airway diameter and cell confluence on epithelial cell injury in an in vitro model of airway reopening. J. Appl. Physiol. 103, 1796–1807 (2007)

    Article  Google Scholar 

  • H.C. Yalcin, K.M. Hallow et al., Influence of cytoskeletal structure and mechanics on epithelial cell injury during cyclic airway reopening. Am. J. Physiol. Lung Cell. Mol. Physiol. 297, 881–891 (2009)

    Article  Google Scholar 

  • Y. Zheng, H. Fujioka et al., Effects of gravity, inertia, and surfactant on steady plug propagation in a two-dimensional channel. Phys. Fluids 19, 082107 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this research was provided by the National Institute of Health grants HL84370 and HL85156.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James B. Grotberg or Shuichi Takayama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. SI-1

Detachment of all cells grown under liquid perfusion culture only after propagation of 3 liquid plugs. (PNG 338 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavana, H., Zamankhan, P., Christensen, P.J. et al. Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model. Biomed Microdevices 13, 731–742 (2011). https://doi.org/10.1007/s10544-011-9543-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9543-5

Keywords

Navigation