Skip to main content
Log in

In vitro analysis of a hepatic device with intrinsic microvascular-based channels

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A novel microfluidics-based bilayer device with a discrete parenchymal chamber modeled upon hepatic organ architecture is described. The microfluidics network was designed using computational models to provide appropriate flow behavior based on physiological data from human microvasculature. Patterned silicon wafer molds were used to generate films with the vascular-based microfluidics network design and parenchymal chamber by soft lithography. The assembled device harbors hepatocytes behind a nanoporous membrane that permits transport of metabolites and small proteins while protecting them from the effects of shear stress. The device can sustain both human hepatoma cells and primary rat hepatocytes by continuous in vitro perfusion of medium, allowing proliferation and maintaining hepatic functions such as serum protein synthesis and metabolism. The design and fabrication processes are scalable, enabling the device concept to serve as both a platform technology for drug discovery and toxicity, and for the continuing development of an improved liver-assist device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • J.W. Allen, T. Hassanein, S.N. Bhatia, Hepatology 34(3), 447–455 (2001)

    Article  Google Scholar 

  • R. Baudoin, A. Corlu, L. Griscom, C. Legallais, E. Leclerc, Toxicol. In Vitro 21(4), 535–544 (2007)

    Article  Google Scholar 

  • K. Bhadriraju, C.S. Chen, Drug Discov. Today 7(11), 612–620 (2002)

    Article  Google Scholar 

  • J. Borenstein, H. Terai, K.R. King, E.J. Weinberg, M.R. Kaazempur-Mofrad, J.P. Vacanti, Biomed. Microdevices 4(3), 167–175 (2002)

    Article  Google Scholar 

  • S.C. Chen, C. Mullon, E. Kahaku, F. Watanabe, W. Hewitt, S. Eguchi, Y. Middleton, N. Arkadopoulos, J. Rozga, B. Solomon, A.A. Demetriou, Ann. N Y Acad. Sci. 831, 350–360 (1997)

    Article  Google Scholar 

  • J.E. Coligan (ed.), Current protocols in protein science (John Wiley & Sons Inc., Brooklyn, N.Y., 1996)

  • M.R. Kaazempur-Mofrad, J.P. Vacanti, R.D. Kamm, Comp. Fluid Solid Mech. 2, 864–867 (2001)

    Article  Google Scholar 

  • S. Kaihara, J. Borenstein, R. Koka, S. Lalan, E.R. Ochoa, M. Ravens, H. Pien, B. Cunningham, J.P. Vacanti, Tissue Eng. 6(2), 105–117 (2000)

    Article  Google Scholar 

  • B.J. Kane, M.J. Zinner, M.L. Yarmush, M. Toner, Anal. Chem. 78(13), 4291–4298 (2006)

    Article  Google Scholar 

  • M.F. Kiani, A.R. Pries, L.L. Hsu, I.H. Sarelius, G.R. Cokelet, Am. J. Physiol. 266(5 Pt 2), H1822–H1828 (1994)

    Google Scholar 

  • E. Leclerc, Y. Sakai, T. Fujii, Biotechnol. Prog. 20(3), 750–755 (2004)

    Article  Google Scholar 

  • P.J. Lee, P.J. Hung, L.P. Lee, Biotechnol. Bioeng. 97(5), 1340–1346 (2007)

    Article  Google Scholar 

  • J.C. McDonald, G.M. Whitesides, Acc. Chem. Res. 35(7), 491–499 (2002)

    Article  Google Scholar 

  • J.C. McDonald, M.L. Chabinyc, S.J. Metallo, J.R. Anderson, A.D. Stroock, G.M. Whitesides, Anal. Chem. 74(7), 1537–1545 (2002)

    Article  Google Scholar 

  • J.M. Ng, I. Gitlin, A.D. Stroock, G.M. Whitesides, Electrophoresis 23(20), 3461–3473 (2002)

    Article  Google Scholar 

  • S. Ostrovidov, J. Jiang, Y. Sakai, T. Fujii, Biomed. Microdevices 6(4), 279–287 (2004)

    Article  Google Scholar 

  • A. Pietrangelo, A. Panduro, J.R. Chowdhury, D.A. Shafritz, J. Clin. Invest. 89(6), 1755–1760 (1992)

    Article  Google Scholar 

  • A.R. Pries, D. Neuhaus, P. Gaehtgens, Am. J. Physiol. 263(6 Pt 2), H1770–H1778 (1992)

    Google Scholar 

  • P.O. Seglen, Methods Cell. Biol. 13, 29–83 (1976)

    Article  Google Scholar 

  • S. Sen, R. Williams, Semin. Liver Dis. 23(3), 283–294 (2003)

    Article  Google Scholar 

  • A.J. Strain, J.M. Neuberger, Science 295(5557), 1005–1009 (2002)

    Article  Google Scholar 

  • A.W. Tilles, H. Baskaran, P. Roy, M.L. Yarmush, M. Toner, Biotechnol. Bioeng. 73(5), 379–389 (2001)

    Article  Google Scholar 

  • UNOS, Annual Report of the U.S. Organ Procurement and Transplantation Network and the Scientific Registry of Transplant Recipients: Transplant Data 1994–2006 (Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, Division of Transplantation, Rockville, MD, 2007)

  • E.J. Weinberg, J.T. Borenstein, M.R.O. Kaazempur-Mofrad, B.J.P. Vacanti, MRS Symp. Proc. 820, 126–127 (2004)

    Google Scholar 

  • S.A. Wrighton, J.C. Stevens, Crit. Rev. Toxicol. 22(1), 1–21 (1992)

    Article  Google Scholar 

  • H. Yamazaki, K. Inoue, M. Mimura, Y. Oda, F.P. Guengerich, T. Shimada, Biochem. Pharmacol. 51(3), 313–319 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

Support from the Center for Integration of Medicine and Innovative Technology (US Army DAMD17-02-2-0006) is gratefully acknowledged. We thank Dr. Irina Pomerantseva for critically reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig Neville.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carraro, A., Hsu, WM., Kulig, K.M. et al. In vitro analysis of a hepatic device with intrinsic microvascular-based channels. Biomed Microdevices 10, 795–805 (2008). https://doi.org/10.1007/s10544-008-9194-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-008-9194-3

Keywords

Navigation