Skip to main content
Log in

Magnetron sputtered diamond-like carbon microelectrodes for on-chip measurement of quantal catecholamine release from cells

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Carbon electrodes are widely used in electrochemistry due to their low cost, wide potential window, and low and stable background noise. Carbon-fiber electrodes (CFE) are commonly used to electrochemically measure “quantal” catecholamine release via exocytosis from individual cells, but it is difficult to integrate CFEs into lab-on-a-chip devices. Here we report the development of nitrogen doped diamond-like carbon (DLC:N) microelectrodes on a chip to monitor quantal release of catecholamines from cells. Advantages of DLC:N microelectrodes are that they are batch producible at low cost, and are harder and more durable than graphite films. The DLC:N microelectrodes were prepared by a magnetron sputtering process with nitrogen doping. The 30 μm by 40 μm DLC:N microelectrodes were patterned onto microscope glass slides by photolithography and lift-off technology. The properties of the DLC:N microelectrodes were characterized by AFM, Raman spectroscopy and cyclic voltammetry. Quantal catecholamine release was recorded amperometrically from bovine adrenal chromaffin cells on the DLC:N microelectrodes. Amperometric spikes due to quantal release of catecholamines were similar in amplitude and area as those recorded using CFEs and the background current and noise levels of microchip DLC:N electrodes were also comparable to CFEs. Therefore, DLC:N microelectrodes are suitable for microchip-based high-throughput measurement of quantal exocytosis with applications in basic research, drug discovery and cell-based biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • G.A.J. Amaratunga, V.S. Veerasamy, C.A. Davis, W.I. Milne, D.R. Mckenzie, J. Yuan, M. Weiler, J. Non-Cryst. Solids 166, 1119 (1993)

    Article  Google Scholar 

  • A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications (Wiley, New York, 2001)

    Google Scholar 

  • P. Chen, B. Xu, N. Tokranova, X. Feng, J. Castracane, K.D. Gillis, Anal. Chem. 75, 518 (2003)

    Article  Google Scholar 

  • R.H. Chow, L.v. Rüden, in Single Channel Recording, ed. by B. Sakmann, E. Neher (Plenum, New York, 1995), p. 245

  • R.H. Chow, L. von Ruden, E. Neher, Nature 356, 60 (1992)

    Article  Google Scholar 

  • D. Di Carlo, L.P. Lee, Anal. Chem. 78, 7918 (2006)

    Article  Google Scholar 

  • A.F. Dias, G. Dernick, V. Valero, M.G. Yong, C.D. James, H.G. Craighead, M. Lindau, Nanotechnology 13, 285 (2002)

    Article  Google Scholar 

  • M.S. Dresselhaus, P.C. Eklund, Adv. Phys. 49, 705 (2000)

    Article  Google Scholar 

  • A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)

    Article  Google Scholar 

  • J. Gao, X.F. Yin, Z.L. Fang, Lab Chip 4, 47 (2004)

    Article  Google Scholar 

  • S. Gupta, R.J. Patel, J. Raman Spectrosc. 38, 188 (2007)

    Article  Google Scholar 

  • S. Gupta, B.R. Weiner, G. Morell, Appl. Phys. Lett. 80, 1471 (2002)

    Article  Google Scholar 

  • M. Hilden, J. Lee, V. Nayak, G. Ouano, A. Wu, IEEE Trans. Magn. 26, 174 (1990)

    Article  Google Scholar 

  • J.A. Jankowski, T.J. Schroeder, R.W. Holz, R.M. Wightman, J. Biol. Chem. 267, 18329 (1992)

    Google Scholar 

  • K.T. Kawagoe, J.A. Jankowski, R.M. Wightman, Anal. Chem. 63, 1589 (1991)

    Article  Google Scholar 

  • P.C. Li, L. de Camprieu, J. Cai, M. Sangar, Lab Chip 4, 174 (2004)

    Article  Google Scholar 

  • R.S. Martin, A.J. Gawron, B.A. Fogarty, F.B. Regan, E. Dempsey, S.M. Lunte, Analyst 126, 277 (2001)

    Article  Google Scholar 

  • D.M. Osboum, C.E. Lunte, Anal. Chem. 73, 5961 (2001)

    Article  Google Scholar 

  • J. Park, S.H. Jung, Y.H. Kim, B. Kim, S.K. Lee, J.O. Park, Lab Chip 5, 91 (2005)

    Article  Google Scholar 

  • A.M. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund, K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon, A. Thess, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus, Science 275, 187 (1997)

    Article  Google Scholar 

  • J. Robertson, Pure Appl. Chem. 66, 1789 (1994)

    Article  Google Scholar 

  • C. Ronning, U. Griesmeier, M. Gross, H.C. Hofsass, R.G. Downing, G.P. Lamaze, Diamond and Related Materials 4, 666 (1995)

    Article  Google Scholar 

  • J.S. Rossier, A. Schwarz, F. Reymond, R. Ferrigno, F. Bianchi, H.H. Girault, Electrophoresis 20, 727 (1999)

    Article  Google Scholar 

  • A. Schulte, R.H. Chow, Anal. Chem. 68, 3054 (1996)

    Article  Google Scholar 

  • F. Segura, M.A. Brioso, J.F. Gomez, J.D. Machado, R. Borges, J. Neurosci. Methods 103, 151 (2000)

    Article  Google Scholar 

  • J.M. Sivertsen, G. Wang, G.L. Chen, J.H. Judy, IEEE Trans. Magn. 33, 926 (1997)

    Article  Google Scholar 

  • X.H. Sun, K.D. Gillis, Anal. Chem. 78, 2521 (2006)

    Article  Google Scholar 

  • H. Tang, Y.F. Gao, IEEE Sens. J. 5, 1346 (2005)

    Article  Google Scholar 

  • H. Ulbricht, G. Moos, T. Hertel, Phys. Rev. B 66, 075404 (2002)

    Article  Google Scholar 

  • J. Wang, M.P. Chatrathi, B. Tian, Anal. Chem. 73, 1296 (2001)

    Article  Google Scholar 

  • J. Wang, M. Pumera, Anal. Chem. 74, 5919 (2002)

    Article  Google Scholar 

  • R.M. Wightman, J.A. Jankowski, R.T. Kennedy, K.T. Kawagoe, T.J. Schroeder, D.J. Leszczyszyn, J.A. Near, E.J. Diliberto Jr., O.H. Viveros, Proc. Natl. Acad. Sci. U.S.A. 88, 10754 (1991)

    Article  Google Scholar 

  • Y. Yang, T.J. Craig, X. Chen, L.F. Ciufo, M. Takahashi, A. Morgan, K.D. Gillis, J. Gen. Physiol. 129, 233 (2007)

    Article  Google Scholar 

  • A. Zeng, E. Liu, S.N. Tan, S. Zhang, J. Gao, Electroanalysis 14, 1110 (2002)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH NS048826.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Gillis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Chen, X., Gupta, S. et al. Magnetron sputtered diamond-like carbon microelectrodes for on-chip measurement of quantal catecholamine release from cells. Biomed Microdevices 10, 623–629 (2008). https://doi.org/10.1007/s10544-008-9173-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-008-9173-8

Keywords

Navigation