Skip to main content
Log in

Micropatterned surfaces for controlling cell adhesion and rolling under flow

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Cell adhesion and rolling on the vascular wall is critical to both inflammation and thrombosis. In this study we demonstrate the feasibility of using microfluidic patterning for controlling cell adhesion and rolling under physiological flow conditions. By controlling the width of the lines (50–1000 μm) and the spacing between them (50–100 μm) we were able to fabricate surfaces with well-defined patterns of adhesion molecules. We demonstrate the versatility of this technique by patterning surfaces with 3 different adhesion molecules (P-selectin, E-selectin, and von Willebrand Factor) and controlling the adhesion and rolling of three different cell types (neutrophils, Chinese Hamster Ovary cells, and platelets). By varying the concentration of the incubating solution we could control the surface ligand density and hence the cell rolling velocity. Finally by patterning surfaces with both P-selectin and von Willebrand Factor we could control the rolling of both leukocytes and platelets simultaneously. The technique described in this paper provides and effective and inexpensive way to fabricate patterned surfaces for use in cell rolling assays under physiologic flow conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • B.R. Alevriadou, J.L. Moake, N.A. Turner, Z.M. Ruggeri, B.J. Folie, M.D. Phillips, A.B. Schreiber, M.E. Hrinda, and L.V. McIntire, Real-time analysis of shear-dependent thrombus formation and its blockade by inhibitors of von Willebrand factor binding to platelets. Blood 81, 1263–1276 (1993).

    Google Scholar 

  • R. Alon, R.C. Fuhlbrigge, E.B. Finger, and T.A. Springer, Interactions through L-selectin between leukocytes and adherent leukocytes nucleate rolling adhesions on selectins and VCAM-1 in shear flow. J. Cell Biol. 135, 849–865 (1996).

    Article  Google Scholar 

  • R.F. Bargatze, S. Kurk, E.C. Butcher, and M.A. Jutila, Neutrophils roll on adherent neutrophils bound to cytokine-induced endothelial cells via L-selectin on the rolling cells. J. Exp. Med. 180, 1785–1792 (1994).

    Article  Google Scholar 

  • K.A. Burridge, M.A. Figa, and J.Y. Wong, Patterning adjacent supported lipid bilayers of desired composition to investigate receptor-ligand binding under shear flow. Langmuir 20, 10252–10259 (2004).

    Article  Google Scholar 

  • C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, and D.E. Ingber, Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Google Scholar 

  • E. Delamarche, A. Bernard, H. Schmid, A. Bietsch, B. Michel, and H. Biebuyck, Microfluidic networks for chemical patterning of substrate: Design and application to bioassays. J. Amer. Chem. Soc. 120, 500–508 (1998).

    Article  Google Scholar 

  • T. Deng, F. Arias, R.F. Ismagilov, P.J. Kenis, and G.M. Whitesides, Fabrication of metallic microstructures using exposed, developed silver halide-based photographic film. Anal. Chem. 72, 645–651 (2000a).

    Article  Google Scholar 

  • T. Deng, J. Tien, B. Xu, and G.M. Whitesides, Using patterns in microfiche as photomasks in 10-mu m-scale microfabrication. Langmuir 15, 6575–6581 (1999).

    Article  Google Scholar 

  • T. Deng, H. Wu, S.T. Brittain, and G.M. Whitesides, Prototyping of masks, masters, and stamps/molds for soft lithography using an office printer and photographic reduction. Anal. Chem. 72, 3176–3180 (2000b).

    Article  Google Scholar 

  • C.A. Dise, J.W. Burch, and D.B. Goodman, Direct interaction of mepacrine with erythrocyte and platelet membrane phospholipid. J. Biol. Chem. 257, 4701–4704 (1982).

    Google Scholar 

  • T.A. Doggett, G. Girdhar, A. Lawshe, D.W. Schmidtke, I.J. Laurenzi, S.L. Diamond, and T.G. Diacovo, Selectin-like kinetics and biomechanics promote rapid platelet adhesion in flow: the GPIb(alpha)-vWF tether bond. Biophys. J. 83, 194–205 (2002).

    Google Scholar 

  • N.D. Gallant, J.R. Capadona, A.B. Frazier, D.M. Collard, and A.J. Garcia, Micropatterned surfaces to engineer focal adhesions for analysis of cell adhesion strengthening. Langmuir 18, 5579–5584 (2002).

    Article  Google Scholar 

  • S.A. Hamburger and R.P. McEver, GMP-140 mediates adhesion of stimulated platelets to neutrophils. Blood 75, 550–554 (1990).

    Google Scholar 

  • A.E. Hicks, S.L. Nolan, V.C. Ridger, P.G. Hellewell, and K.E. Norman, Recombinant P-selectin glycoprotein ligand-1 directly inhibits leukocyte rolling by all 3 selectins in vivo: complete inhibition of rolling is not required for anti-inflammatory effect. Blood 101, 3249–3256 (2003).

    Article  Google Scholar 

  • M.B. Lawrence and T.A. Springer, Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65, 859–873 (1991).

    Article  Google Scholar 

  • N. Li Jeon, H. Baskaran, S.K. Dertinger, G.M. Whitesides, L. Van de Water, and M. Toner, Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20, 826–830 (2002).

    Google Scholar 

  • N. Li, H. Hu, M. Lindqvist, E. Wikstrom-Jonsson, A.H. Goodall, and P. Hjemdahl, Platelet-leukocyte cross talk in whole blood. Arterioscler Thromb. Vasc. Biol. 20, 2702–2708 (2000).

    Google Scholar 

  • P. Libby, P.M. Ridker, and A. Maseri, Inflammation and atherosclerosis. Circulation 105, 1135–1143 (2002).

    Article  Google Scholar 

  • R.P. McEver, Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation. Thromb. Haemost. 86, 746–756 (2001).

    Google Scholar 

  • R.P. McEver, Selectins: lectins that initiate cell adhesion under flow. Curr. Opin. Cell Biol. 14, 581–586 (2002).

    Article  Google Scholar 

  • K.L. Moore, K.D. Patel, R.E. Bruehl, F. Li, D.A. Johnson, H.S. Lichenstein, R.D. Cummings, D.F. Bainton, and R.P. McEver, P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J. Cell Biol. 128, 661–671 (1995).

    Article  Google Scholar 

  • K.L. Moore, A. Varki, and R.P. McEver, GMP-140 binds to a glycoprotein receptor on human neutrophils: evidence for a lectin-like interaction. J. Cell Biol. 112, 491–499 (1991).

    Article  Google Scholar 

  • M. Mrksich, C.S. Chen, Y. Xia, L.E. Dike, D.E. Ingber, and G.M. Whitesides, Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proc. Natl. Acad. Sci. USA 93, 10775–10778 (1996).

    Article  Google Scholar 

  • T. Palabrica, R. Lobb, B.C. Furie, M. Aronovitz, C. Benjamin, Y.M. Hsu, S.A. Sajer, and B. Furie, Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature 359, 848–851 (1992).

    Article  Google Scholar 

  • V. Ramachandran, M.U. Nollert, H. Qiu, W.J. Liu, R.D. Cummings, C. Zhu, and R.P. McEver, Tyrosine replacement in P-selectin glycoprotein ligand-1 affects distinct kinetic and mechanical properties of bonds with P- and L-selectin. Proc. Natl. Acad. Sci. USA 96, 13771–13776 (1999).

    Article  Google Scholar 

  • V. Ramachandran, M. Williams, T. Yago, D.W. Schmidtke, and R.P. McEver, Dynamic alterations of membrane tethers stabilize leukocyte rolling on P-selectin. Proc. Natl. Acad. Sci. USA 101, 13519–13524 (2004).

    Article  Google Scholar 

  • D.W. Schmidtke and S.L. Diamond, Direct observation of membrane tethers formed during neutrophil attachment to platelets or P-selectin under physiological flow. J. Cell Biol. 149, 719–730 (2000).

    Article  Google Scholar 

  • R. Singhvi, A. Kumar, G.P. Lopez, G.N. Stephanopoulos, D.I. Wang, G.M. Whitesides, and D.E. Ingber, Engineering cell shape and function. Science 264, 696–698 (1994).

    Article  Google Scholar 

  • M. Sperandio, M.L. Smith, S.B. Forlow, T.S. Olson, L. Xia, R.P. McEver, and K. Ley, P-selectin glycoprotein ligand-1 mediates L-selectin-dependent leukocyte rolling in venules. J. Exp. Med. 197, 1355–1363 (2003).

    Article  Google Scholar 

  • J. Tan, H. Shen, K.L. Carter, and W.M. Saltzman, Controlling human polymorphonuclear leukocytes motility using microfabrication technology. J. Biomed. Mater. Res. 51, 694–702 (2000).

    Article  Google Scholar 

  • J. Tan, H. Shen, and W.M. Saltzman, Micron-scale positioning of features influences the rate of polymorphonuclear leukocyte. migration. Biophys. J. 81, 2569–2579 (2001).

    Article  Google Scholar 

  • N.A. Turner, J.L. Moake, S.G. Kamat, A.I. Schafer, N.S. Kleiman, R. Jordan, and L.V. McIntire, Comparative real-time effects on platelet adhesion and aggregation under flowing conditions of in vivo aspirin, heparin, and monoclonal antibody fragment against glycoprotein IIb–IIIa. Circulation 91, 1354–1362 (1995).

    Google Scholar 

  • D. Vestweber and J.E. Blanks, Mechanisms that regulate the function of the selectins and their ligands. Physiol. Rev. 79, 181–213 (1999).

    Google Scholar 

  • B. Walcheck, K.L. Moore, R.P. McEver, and T.K. Kishimoto, Neutrophil-neutrophil interactions under hydrodynamic shear stress involve L-selectin and PSGL-1. A mechanism that amplifies initial leukocyte accumulation of P-selectin in vitro. J. Clin. Invest. 98, 1081–1087 (1996).

    Article  Google Scholar 

  • L. Xia, M. Sperandio, T. Yago, J.M. McDaniel, R.D. Cummings, S. Pearson-White, K. Ley, and R.P. McEver, P-selectin glycoprotein ligand-1-deficient mice have impaired leukocyte tethering to E-selectin under flow. J. Clin. Invest. 109, 939–950 (2002).

    Article  Google Scholar 

  • T. Yago, A. Leppanen, H. Qiu, W.D. Marcus, M.U. Nollert, C. Zhu, R.D. Cummings, and R.P. McEver, Distinct molecular and cellular contributions to stabilizing selectin-mediated rolling under flow. J. Cell Biol. 158, 787–799 (2002).

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Rodger McEver and Dr. Peter McFetridge for critically reading the manuscript, and Blake Ashcroft for assistance with image analysis. This work was supported by a National Institutes of Health Grant (P20 RR 018758), an American Heart Association Grant (0230139N), and by a University of Oklahoma Bioengineering Seed Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Schmidtke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nalayanda, D.D., Kalukanimuttam, M. & Schmidtke, D.W. Micropatterned surfaces for controlling cell adhesion and rolling under flow. Biomed Microdevices 9, 207–214 (2007). https://doi.org/10.1007/s10544-006-9022-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-9022-6

Keywords

Navigation