Skip to main content

Advertisement

Log in

A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Growth factor-induced chemotaxis of cancer cells is believed to play a critical role in metastasis, directing the spread of cancer from the primary tumor to secondary sites in the body. Understanding the mechanistic and quantitative behavior of cancer cell migration in growth factor gradients would greatly help in future treatment of metastatic cancers. Using a novel microfluidic chemotaxis chamber capable of simultaneously generating multiple growth factor gradients, we examined the migration of the human metastatic breast cancer cell line MDA-MB-231 in various conditions. First, we quantified and compared the migration in two gradients of epidermal growth factor (EGF) spanning different concentrations: 0–50 ng/ml and 0.1–6 ng/ml. Cells showed a stronger response in the 0–50 ng/ml gradient. However, the fact that even a shallow gradient of EGF can induce chemotaxis, and that EGF can direct migration over a large dynamic range of gradients, confirms the potency of EGF as a chemoattractant. Second, we investigated the effect of antibody against the EGF receptor (EGFR) on MDA-MB-231 chemotaxis. Quantitative analysis indicated that anti-EGFR antibody impaired both motility and directional orientation (CI = 0.03, speed = 0.71 μm/min), indicating that cell motility was induced by the activation of EGFR. The ability to compare, in terms of quantitative parameters, the effects of different pharmaceutical inhibitors, as well as subtle differences in experimental conditions, will aid in our understanding of mechanisms that drive metastasis. The microfluidic chamber described in this work will provide a platform for cell-based assays that can be used to compare the effectiveness of different pharmaceutical compounds targeting cell migration and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Bailly, L. Yan, G.M. Whitesides, J.S. Condeelis and J.E. Segall, Experimental Cell Research 241, 285–299 (1998).

    Article  Google Scholar 

  • C.G. Bredin, Z. Liu, D. Hauzenberger and J. Klominek, Int J Cancer 82, 338–45 (1999).

    Article  Google Scholar 

  • A.F. Chambers, A.C. Groom and I.C. MacDonald, Nat Rev Cancer 2, 563–72 (2002).

    Article  Google Scholar 

  • F. Ciardiello and G. Tortora, Clin Cancer Res 7, 2958–2970 (2001).

    Google Scholar 

  • J.S. Condeelis, J.B. Wyckoff, M. Bailly, R. Pestell, D. Lawrence, J. Backer and J.E. Segall, Semin Cancer Biol 11, 119–8 (2001).

    Article  Google Scholar 

  • S.K.W. Dertinger, D.T. Chiu, N.L. Jeon and G.M. Whitesides, Anal Chem 73, 1240–1246 (2001).

    Article  Google Scholar 

  • S. Dluz, S. Higashiyama, D. Damm, J. Abraham and M. Klagsbrun, J Biol Chem 268, 18330–18334 (1993).

    Google Scholar 

  • O.M. Fischer, S. Streit, S. Hart and A. Ullrich, Current Opinion in Chemical Biology 7, 490–495 (2003).

    Article  Google Scholar 

  • N.L. Jeon, H. Baskaran, S.K.W. Dertinger, G.M. Whitesides, L. Van De Water and M. Toner, Nat Biotechnol 20 826–830 (2002).

    Google Scholar 

  • N.L. Jeon, S.K.W. Dertinger, D.T. Chiu and G.M. Whitesides, Langmuir 16, 8311–8316 (2000).

    Article  Google Scholar 

  • J. Kassis, D.A. Lauffenburger, T. Turner and A. Wells, Seminars in Cancer Biology 11, 105–119 (2001).

    Article  Google Scholar 

  • N. Kume and M.J. Gimbrone, J Clin Invest 93, 907–11 (1994).

    Article  Google Scholar 

  • M.D. Levine, L.A. Liotta and M.L. Stracke, EXS 74, 157–179 (1995).

    Google Scholar 

  • F. Lin, W. Saadi, S.W. Rhee, S.-J. Wang, S. Mittal and N.L. Jeon, Lab Chip 4, DOI: 10.1039/b313600k (2004).

  • G. Maheshwari, A. Wells, L.G. Griffith and D.A. Lauffenburger, Biophys J 76, 2814–23 (1999).

    Article  Google Scholar 

  • J. Mendelsohn, Endocr Relat Cancer 8, 3–9 (2001).

    Article  Google Scholar 

  • J. Mendelsohn and J. Baselga, Oncogene 19, 6550–65 (2000).

    Article  Google Scholar 

  • G. Peoples, S. Blotnick, K. Takahashi, M. Freeman, M. Klagsbrun and T. Eberlein, PNAS 92, 6547–6551 (1995).

    Google Scholar 

  • J.T. Price, T. Tiganis, A. Agarwal, D. Djakiew and E.W. Thompson, Cancer Research 59, 5475–5478 (1999).

    Google Scholar 

  • R. Radinsky, S. Risin, D. Fan, Z. Dong, D. Bielenberg, C. Bucana and I.J. Fidler, Clin Cancer Res 1, 19–31 (1995).

    Google Scholar 

  • P.S. Steeg, Nat Rev Cancer 3, 55–63 (2003).

    Article  Google Scholar 

  • H. Steven Wiley, S.Y. Shvartsman and D.A. Lauffenburger, Trends in Cell Biology 13, 43-50 (2003).

    Article  Google Scholar 

  • T. Turner, M.V. Epps-Fung, J. Kassis and A. Wells, Clin Cancer Res 3, 2275–82 (1997).

    Google Scholar 

  • S.-J. Wang, W. Saadi, F. Lin, C.M.-C. Nguyen and N.L. Jeon, Exp Cell Res 300, 180–189 (2004).

    Article  Google Scholar 

  • A. Wells, Adv Cancer Res 78, 31–101 (2000).

    Article  Google Scholar 

  • A. Wells, J. Kassis, J. Solava, T. Turner and D.A. Lauffenburger, Acta Oncol 41, 124–30 (2002).

    Article  Google Scholar 

  • G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang and D.E. Ingber, Annu Rev Biomed Eng 3, 335–73 (2001).

    Article  Google Scholar 

  • P.C. Wilkinson, Journal of Immunological Methods 216, 139–153 (1998).

    Article  Google Scholar 

  • J. Woodburn, Pharmacol Ther 82, 241–50 (1999).

    Article  Google Scholar 

  • J.B. Wyckoff, L. Insel, K. Khazaie, R.B. Lichtner, J.S. Condeelis and J.E. Segall, Experimental Cell Research 242, 100–109 (1998).

    Article  Google Scholar 

  • J.B. Wyckoff, J.G. Jones, J.S. Condeelis and J.E. Segall, Cancer Res 60, 2504–2511 (2000).

    Google Scholar 

  • J.B. Wyckoff, J.E. Segall and J.S. Condeelis, Cancer Res 60, 5401–4 (2000).

    Google Scholar 

  • X. Yang, J. Corvalan, P. Wang, C. Roy and C. Davis, J Leukoc Biol 66, 401–410 (1999).

    Google Scholar 

  • J.H. Zar, Biostatistical Analysis (Prentice-Hall, Inc, Upper Saddle River, New Jersey, (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saadi, W., Wang, SJ., Lin, F. et al. A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Biomed Microdevices 8, 109–118 (2006). https://doi.org/10.1007/s10544-006-7706-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-7706-6

Keywords

Navigation