Skip to main content
Log in

Evaluation of Microfluidic Biosensor Development Using Microscopic Analysis of Molecular Beacon Hybridization Kinetics

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Molecular beacons, oligonucleotide probes that fluoresce upon hybridization to a target nucleic acid, can be used in microfluidic devices to detect and quantify nucleic acids in solution as well as inside bacterial cells. Three essential steps towards the development of such devices as integrated microfluidic biosensors using molecular beacons were investigated in the present study. First, experiments using real-time confocal microscopy indicated that diffusion of DNA molecular beacons across a 100-μm diameter microfluidic channel took less than one minute after the flow of reagents was stopped. Second, experiments to evaluate hybridization kinetics of DNA molecular beacons with target nucleic acids in solution showed that DNA molecular beacons can be used to characterize hybridization kinetics in real time in microfluidic channels and that hybridization signals approached their maximum in approximately three minutes. Finally, it was demonstrated that peptide nucleic acid molecular beacons can be used to detect bacterial cells in microfluidic devices. These results suggest that the use of microfluidic devices to detect nucleic acids in solution and in bacterial cells is promising and that further development of an integrated microfluidic biosensor for bacterial detection based on this concept is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Balberg, K. Hristova, D.J. Brady, D.J. Beebe, and L. Raskin, Proceedings of 1st Annual International IEEE-EMBS, Special Topic Conference on Microtechnologies in Medicine and Biology (Lyon, France, 2000).

  • M. Brinkmeier, K. Dorre, J. Stephan, and M. Eigen, Anal. Chem. 71, 609–616 (1999).

    Google Scholar 

  • P.S. Dittrich and P. Schwille, Anal. Chem. 74, 4472 (2002).

    Google Scholar 

  • D.C. Duffy, J.C. McDonald, O.J.A. Schueller, and G.M. Whitesides, Analytical Chemistry 70, 4974 (1998).

    Google Scholar 

  • M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S.M. Freier, D.A. Driver, R.H. Berg, S.K. Kim, B. Norden, and P.E. Nielsen, Nature 365, 566 (1993).

    Google Scholar 

  • D. Figeys and D. Pinto, Anal Chem 72, 330A (2000).

    Article  Google Scholar 

  • I. Grant, Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science 211, 55 (1997).

    Google Scholar 

  • D.J. Harrison, K. Fluri, K. Seiler, Z.H. Fan, C.S. Effenhauser, and A. Manz, Science 261, 895 (1993).

    Google Scholar 

  • A. Hatch, A.E. Kamholz, K.R. Hawkins, M.S. Munson, E.A. Schilling, B.H. Weigl, and P. Yager, Nat Biotechnol 19, 461 (2001).

    Google Scholar 

  • K. Hristova, M. Balberg, D. Frigon, M. Mau, D.J. Brady, D.J. Beebe, and L. Raskin, Abstract Book of 100th General Meeting of American Society for Microbiology (Los-Angeles, CA, 2000).

  • B.H. Jo, L.M. Van Lerberghe, K.M. Motsegood, and D.J. Beebe, Journal of Microelectromechanical Systems 9, 76 (2000).

    Google Scholar 

  • A.E. Kamholz, B.H. Weigl, B.A. Finlayson, and P. Yager, Anal Chem 71, 5340 (1999).

    Google Scholar 

  • R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref, and D.J. Beebe, Journal of Microelectromechanical Systems 9, 190 (2000).

    Google Scholar 

  • J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J. Schueller, and G.M. Whitesides, Electrophoresis 21, 27 (2000).

    Google Scholar 

  • C.D. Meinhart, S.T. Wereley, and J.G. Santiago, Experiments in Fluids 27, 414 (1999).

    Google Scholar 

  • P. Mitchell, Nat Biotechnol 19, 717 (2001).

    Google Scholar 

  • L. Raskin, L.K. Poulsen, D.R. Noguera, B.E. Rittmann, and D.A. Stahl, Appl. Environ. Microbiol. 60, 1241 (1994).

    Google Scholar 

  • A.W. Schaefer, J.J. Reynolds, D.L. Marks, and S.A. Boppart, IEEE Trans Biomedical Engr 51, 186 (2004).

    Google Scholar 

  • E.A. Schilling, A.E. Kamholz, and P. Yager, Anal Chem 74, 1798 (2002).

    Google Scholar 

  • A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezic, H.A. Stone, and G.M. Whitesides, Science 295, 647 (2002).

    Google Scholar 

  • D. Therriault, S.R. White, and J.A. Lewis, Nat. Materials 2, 265 (2003).

    Google Scholar 

  • S. Tyagi, D.P. Bratu, and F.R. Kramer, Nat Biotechnol 16, 49 (1998).

    Google Scholar 

  • S. Tyagi and F.R. Kramer, Nat Biotechnol 14, 303 (1996).

    Google Scholar 

  • C. Xi, M. Balberg, S.A. Boppart, and L. Raskin, Appl. Environ. Microbiol. 69, 5673 (2003).

    Google Scholar 

  • C. Xi, D.L. Marks, D.S. Parikh, L. Raskin, and S.A. Boppart, Proc. Natl. Acad. Sci. USA 101, 7516 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Boppart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xi, C., Raskin, L. & Boppart, S.A. Evaluation of Microfluidic Biosensor Development Using Microscopic Analysis of Molecular Beacon Hybridization Kinetics. Biomed Microdevices 7, 7–12 (2005). https://doi.org/10.1007/s10544-005-6166-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-005-6166-8

Key Words

Navigation