Skip to main content
Log in

A new minimization protocol for solving nonlinear Poisson–Boltzmann mortar finite element equation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The nonlinear Poisson–Boltzmann equation (PBE) is a widely-used implicit solvent model in biomolecular simulations. This paper formulates a new PBE nonlinear algebraic system from a mortar finite element approximation, and proposes a new minimization protocol to solve it efficiently. In particular, the PBE mortar nonlinear algebraic system is proved to have a unique solution, and is equivalent to a unconstrained minimization problem. It is then solved as the unconstrained minimization problem by the subspace trust region Newton method. Numerical results show that the new minimization protocol is more efficient than the traditional merit least squares approach in solving the nonlinear system. At least 80 percent of the total CPU time was saved for a PBE model problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Achdou, Y. Maday, and O. Widlund, Iterative substructuring preconditioners for mortar element methods in two dimensions, SIAM J. Numer. Anal., 36 (1999), pp. 551–580.

    Article  MathSciNet  Google Scholar 

  2. N. A. Baker, Improving implicit solvent simulations: a Poisson-centric view, Curr. Opin. Struc. Biol., 15 (2005), pp. 137–143.

    Article  Google Scholar 

  3. N. Baker, D. Sept, M. Holst, and J. A. McCammon, The adaptive multilevel finite element solution of the Poisson–Boltzmann equation on massively parallel computers, IBM J. Res. Develop., 45 (2001), pp. 427–438.

    Article  Google Scholar 

  4. N. A. Baker, D. Sept, S. Joseph, M. Holst, and J. A. MoCammon, Electrostatics of nanosystems: Application to microtubules and the ribosome, Proc. Nat. Acad. Sci. USA, 98 (2001), pp. 10037–10041.

    Article  Google Scholar 

  5. R. Bank and M. Holst, A new paradigm for parallel adaptive meshing algorithms, SIAM Rev., 45 (2003), pp. 291–323.

    Article  MATH  MathSciNet  Google Scholar 

  6. F. B. Belgacem, The mortar finite element method with Lagrange multipliers, Numer. Math., 84 (1999), pp. 173–197.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Bernardi, Y. Maday, and A. Patera, A new nonconforming approach to domain decomposition: The mortar element method, in H. Brezis et al., eds., Nonlinear Partial Differential Equations and Their Applications, vol. XI, Pitman Res. Notes. Math. Ser., 299, Longman Sci. Tech., Harlow, 1994, pp. 13–51.

  8. M. A. Branch, T. F. Coleman, and Y. Li, A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems, SIAM J. Sci. Comput., 21 (1999), pp. 1–23.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 2nd edn., Springer, New York, 2002.

    MATH  Google Scholar 

  10. R. H. Byrd, R. B. Schnabel, and G. A. Shultz, Approximate solution of the trust region problem by minimization over two-dimensional subspaces, Math. Progr., 40 (1988), pp. 247–263.

    Article  MATH  MathSciNet  Google Scholar 

  11. W. Chen, Y. Shen and Q. Xia, A mortar finite element approximation for the linear Poisson–Boltzmann equation, Appl. Math. Comput., 164 (2005), pp. 11–23.

    Article  MATH  MathSciNet  Google Scholar 

  12. T. F. Coleman and Y. Li, An interior, trust region approach for nonlinear minimization subject to bounds, SIAM J. Optimization, 6 (1996), pp. 418–445.

    Article  MATH  MathSciNet  Google Scholar 

  13. T. F. Coleman and Y. Li, On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds, Math. Progr., 67 (1994), pp. 189–224.

    Article  MathSciNet  Google Scholar 

  14. M. E. Davis, J. D. Madura, B. A. Luty, and J. A. McCammon, Electrostatics and diffusion of molecules in solution: Simulations with the University of Houston Browian dynamics program, Comp. Phys. Comm., 62 (1991), pp. 187–197.

    Article  Google Scholar 

  15. L. Debnath and P. Mikusinnski, Introduction to Hilbert Spaces with Applications, Academic Press, New York, 1990.

    MATH  Google Scholar 

  16. S. C. Eisenstat and H. F. Walker, Globally convergent inexact Newton methods, SIAM J. Optim., 4 (1994), pp. 393–422.

    Article  MATH  MathSciNet  Google Scholar 

  17. I. Ekeland and R. Témam, Convex Analysis and Variational Problems, SIAM, Philadelphia, 1999.

    MATH  Google Scholar 

  18. K. E. Forsten, R. E. Kozack, D. A. Lauffenburger, and S. Subramaniam, Numerical solution of the nonlinear Poisson–Boltzmann equation for a membrane-electrolyte system, J. Phys. Chem., 98 (1994), pp. 5580–5586.

    Article  Google Scholar 

  19. G. H. Golub and C. F. van Loan, Matrix Computations, 3rd edn., John Hopkins University Press, Baltimore, MD, 1996.

    MATH  Google Scholar 

  20. J. Hoffman and A. Logg, PUFFIN Web page: http://www.fenics.org/puffin/, 2004.

  21. J. Hoffman, J. Jansson, A. Logg, and G. N. Wells, DOLFIN Web page: http://www.fenics.org/dolfin, 2003.

  22. M. Holst and F. Saied, Numerical solution of the nonlinear Poisson–Boltzmann equation: Developing more robust and efficient methods, J. Comput. Chem., 16 (1995), pp. 337–364.

    Article  Google Scholar 

  23. M. Holst, N. Baker, and F. Wang, Adaptive multilevel finite element solution of the Poisson–Boltzmann equation; I: Algorithms and examples, J. Comput. Chem., 21 (2000), pp. 1319–1342.

    Article  Google Scholar 

  24. B. Honig and A. Nicholls, Classical electrostatics in biology and chemistry, Science, 268 (1995), pp. 1144–1149.

    Article  Google Scholar 

  25. B. Al-Lazikani, J. Jung, Z. Xiang, and B. Honig, Protein structure prediction, Current Option in Chemical Biology, 5 (2001), pp. 51–56.

    Article  Google Scholar 

  26. B. P. Lamichhane and B. I. Wohlmuth, Mortar finite elements for interface problems, Computing, 72 (2004), pp. 333–348.

    Article  MATH  MathSciNet  Google Scholar 

  27. The MathWorks, Inc., MATLAB Partial Differential Equation Toolbox 1.0.8 Web page: http://www.mathworks.com/products/pde/, 2005.

  28. J. J. Moré and D. C. Sorensen, Computing a Trust Region Step, SIAM J. Sci. Stat. Comput., 3 (1983), pp. 553–572.

    Article  Google Scholar 

  29. J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, 2000.

    Google Scholar 

  30. W. Rocchia, E. Alexov, and B. Hoing, Extending the applicability of the nonlinear Poisson–Boltzmann equation: Multiple dielectric constants and multivalent ions, J. Phys. Chem. B, 105 (2001), pp. 6507–6514.

    Article  Google Scholar 

  31. B. Roux and T. Simonson, Implicit solvent models, Biophys. Chem., 78 (1999), pp. 1–20.

    Article  Google Scholar 

  32. C. Tanford, Physical Chemistry of Macromolecules, John Wiley & Sons, New York, NY, 1961.

    Google Scholar 

  33. Y. N. Vorobjev and H. A. Scheraga, A fast adaptive multigrid boundary element method for macromolecular electrostatic computations in a solvent, J. Comput. Chem., 18 (1997), pp. 569–583.

    Article  Google Scholar 

  34. J. Wagoner and N. A. Baker, Solvatin forces on biomolecular structures: a comparison of explicit solvent and Poisson–Boltzmann models, J. Comput. Chem., 25 (2004), pp. 1623–1629.

    Article  Google Scholar 

  35. B. I. Wohlmuth, A V-cycle multigrid approach for mortar finite elements, SIAM J. Numer. Anal., 42 (2005), pp. 2476–2405.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dexuan Xie.

Additional information

AMS subject classification (2000)

65N30, 65H10, 65K10, 92-08

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, D., Zhou, S. A new minimization protocol for solving nonlinear Poisson–Boltzmann mortar finite element equation . Bit Numer Math 47, 853–871 (2007). https://doi.org/10.1007/s10543-007-0145-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-007-0145-9

Key words

Navigation