Skip to main content
Log in

Copper toxicity in the microalga Chlamydomonas reinhardtii: an integrated approach

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The effects of copper exposure at five different concentrations on the freshwater alga Chlamydomonas reinhardtii were studied at the biochemical (metabolite), physiological (uptake kinetics and flow cytometry) and growth level. Changes at the physiological level were evident at the lowest exposure concentration while effects on the metabolome and on growth only occurred at the highest copper concentration tested. Flow cytometry revealed the presence of higher reactive oxygen species concentrations in algae exposed to higher copper concentrations and this was confirmed by a significant reduction in glutathione levels as part of the metabolomics assessment. Cu2+ uptake kinetic data contributed information on possible mechanisms of copper toxicity, revealing that, a decrease in efflux pumping might be at the basis of an increased metal accumulation at higher exposure levels. This study demonstrates the value of using a comparative approach to investigating the mechanisms of toxicity rather than focusing on a single level of organization or effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnal N, Astiz M, de Alaniz MaJT, Marra CA (2011) Clinical parameters and biomarkers of oxidative stress in agricultural workers who applied copper-based pesticides. Ecotoxicol Environ Saf 74:1779–1786

    Article  PubMed  CAS  Google Scholar 

  • Bertoni G (2011) Global analysis of copper responsiveness in Chlamydomonas. Plant Cell 23:1188

    Article  CAS  Google Scholar 

  • Bölling C, Fiehn O (2005) Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiol 139:1995–2005

    Article  PubMed  Google Scholar 

  • Castruita M, Casero D, Karpowicz SJ, Kropat J, Vieler A, Hsieh SI, Yan W, Cokus S, Loo JA, Benning C, Pellegrini M, Merchant SS (2011) Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps. Plant Cell 23:1273–1292

    Article  PubMed  CAS  Google Scholar 

  • El-Gendy KS, Radwan MA, Gad AF (2009) In vivo evaluation of oxidative stress biomarkers in the land snail. Theba pisana exposed to copper-based pesticides. Chemosphere 77:339–344

    Article  PubMed  CAS  Google Scholar 

  • Eriksson L, Johansson E, Kettaneh-Wold N, Wold S (1999) Introduction to multi- and megavariate data analysis using projection methods (PCA and PLS). Umetrics, Umeå

    Google Scholar 

  • Fan TW-M (1996) Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog Nucl Magn Reson Spec 28:161–219

    CAS  Google Scholar 

  • Franklin NM, Stauber JL, Lim RP (2001) Development of flow cytometry-based algal bioassays for assessing toxicity of copper in natural waters. Environ Toxicol Chem 20:160–170

    Article  PubMed  CAS  Google Scholar 

  • Franklin NM, Stauber JL, Apte SC, Lim RP (2002) Effect of initial cell density on the bioavailability and toxicity of copper in microalgal bioassays. Environ Toxiol Chem 21:742–751

    Article  CAS  Google Scholar 

  • GraphPad Prism (2009). GraphPad Software, Inc., 4th edn. La Jolla, USA

  • Grossman AR (2005) Paths toward algal genomics. Plant Physiol 137:410–427

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson JP (2005) Visual Minteq. 2.32 edn. Royal Institute of Technology, Stockholm, Sweden

  • Hill KL, Hassett R, Kosman D, Merchant S (1996) Regulated copper uptake in Chlamydomonas reinhardtii in response to copper availability. 112:697–704

  • Jamers A, De Coen W (2010) Effect assessment of the herbicide paraquat on a green alga using differential gene expression and biochemical biomarkers. Envirion Toxicol Chem 29:893–901

    Article  Google Scholar 

  • Jamers A, Van der Ven K, Moens L, Robbens J, Potters G, Guisez Y, Blust R, De Coen W (2006) Effect of copper exposure on gene expression profiles in Chlamydomonas reinhardtii based on microarray analysis. Aquat Toxicol 80:249–260

    Article  PubMed  CAS  Google Scholar 

  • Jamers A, Lenjou M, Deraedt P, Bockstaele DV, Blust R, Coen WD (2009) Flow cytometric analysis of the cadmium-exposed green alga Chlamydomonas reinhardtii (Chlorophyceae). Eur J Phycol 44:541–543

    Article  CAS  Google Scholar 

  • Jones OAH, Griffin JL, Dondero F, Viarengo A (2008) Metabolic profiling of Mytilus galloprovincialis and its potential applications for pollution assessment. Mar Ecol Prog Ser 369:169–179

    Article  CAS  Google Scholar 

  • Kitano H (2002) Looking beyond the details: a rise in system-oriented approaches in genetics and molecular biology. Curr Genet 41:1–10

    Article  PubMed  CAS  Google Scholar 

  • Le Belle J, Harris N, Williams S, Bhakoo K (2002) A comparison of cell and tissue extraction techniques using high-resolution 1H-NMR spectroscopy. NMR Biomed 15:37–44

    Article  PubMed  Google Scholar 

  • Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:23415–23425

    Article  PubMed  CAS  Google Scholar 

  • Merchant S, Bogorad L (1986a) Rapid degradation of apoplastocyanin in Cu(II)-deficient cells of Chlamydomonas reinhardtii. J Bio Chem 261:15850–15853

    CAS  Google Scholar 

  • Merchant S, Bogorad L (1986b) Regulation by copper of the expression of plastocyanin and cytochrome c552 in Chlamydomonas reinhardi. Mol Cell Biol 6:462–469

    PubMed  CAS  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF, Qu L-H, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen C-L, Cognat VR, Croft MT, Dent R, Dutcher S, Fernández E, Fukuzawa H, González-Ballester D, González-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SPD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral J-P, Riaño-Pachón DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen C-J, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martínez D, Ngau WCA, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  PubMed  CAS  Google Scholar 

  • Monteiro CM, Castro PML, Malcata FX (2012) Metal uptake by microalgae: Underlying mechanisms and practical applications. Biotechnol Prog 28:299–311

    Article  PubMed  CAS  Google Scholar 

  • Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii. J Biochem 282:25475–25486

    CAS  Google Scholar 

  • Nishikawa K, Tominaga N (2001) Isolation, growth, ultrastructure, and metal tolerance of the green alga Chlamydomonas acidophila (Chlorophyta). Biosci Biotechnol Biochem 65:2650–2656

    Article  PubMed  CAS  Google Scholar 

  • Pinto E, Sigaud-kutner TCS, Leitão MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Quinn JM, Nakamoto SS, Merchant S (1999) Induction of coproporphyrinogen oxidase in Chlamydomonas chloroplasts occurs via transcriptional regulation of Cpx1 mediated by copper response elements and increased translation from a copper deficiency-specific form of the transcript. Plant Physiol 274:14444–14454

    CAS  Google Scholar 

  • Smith RM, Martell AE, Motekaitis RJ (2005) NIST critically selected stability constants of metal complexes database

  • Spurgeon DJ, Svendsen C, Weeks JM, Hankard PK, Stubberud HE, Kammenga JE (2003) Quantifying copper and cadmium impacts on intrinsic rate of population increase in the terrestrial oligochaete Lumbricus rubellus. Environ Toxicol Chem 22:1465–1472

    PubMed  CAS  Google Scholar 

  • Spurgeon DJ, Jones OAH, Dorne JLCM, Svendsen C, Swain S, Sturzenbaum SR (2010) Systems toxicology approaches for understanding the joint effects of environmental chemical mixtures. Sci Total Environ 408:3725–3734

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Kong F, Wanga M, Qian L, Shi X (2007) Determination of short-term copper toxicity in a multispecies microalgal population using flow cytometry. Ecotoxicol Environ Saf 66:49–56

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Institute for the Promotion of Innovation by Science and Technology in Flanders, Belgium and the European Union (European Commission, FP6 Contract No. 003956). OAHJ thanks Robin Jones for helpfull advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver A. H. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamers, A., Blust, R., De Coen, W. et al. Copper toxicity in the microalga Chlamydomonas reinhardtii: an integrated approach. Biometals 26, 731–740 (2013). https://doi.org/10.1007/s10534-013-9648-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-013-9648-9

Keywords

Navigation