Skip to main content

Advertisement

Log in

Beryllium sulfate induces p21CDKN1A expression and a senescence-like cell cycle arrest in susceptible cancer cell types

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

In fibroblasts, beryllium salt causes activation of the p53 transcription factor and induction of a senescence-like state. It is not known whether Be2+ can affect the proliferation of cancer cells, which are generally unsusceptible to senescence. A172 glioblastoma and RKO colon carcinoma cell lines each have wildtype p53, so these cell types have the potential to be responsive to agents that activate p53. In A172 cells, BeSO4 produced a G0/G1-phase cell cycle arrest and increased expression of senescence-associated β-galactosidase, an enzymatic marker of senescence. BeSO4 caused phosphorylation of serine-15 of p53, accumulation of p53 protein, and expression of p21, the cyclin-dependent kinase inhibitor that is prominent during senescence. BeSO4 inhibited A172 growth with an IC50 = 4.7 μM in a 6-day proliferation assay. In contrast, BeSO4 had no effect on RKO cells, even though Be2+ uptake was similar for the two cell types. This differential responsiveness marks BeSO4 as a reagent capable of activating a separable branch of the p53 signaling network. A172 and RKO cells are known to exhibit p53-dependent upregulation of p21 in response to DNA damage. The RKO cells produced high levels of p21 when exposed to DNA damaging agents, yet failed to express p21 when treated with BeSO4. Conversely, BeSO4 did not cause DNA damage in A172 cells, yet it was a potent inducer of p21 expression. These observations indicate that the growth control pathway affected by BeSO4 is distinct from the DNA damage response pathway, even though both ultimately converge on p53 and p21.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ashby J, Ishidate M Jr, Stoner GD, Morgan MA, Ratpan F, Callander RD (1990) Studies on the genotoxicity of beryllium sulphate in vitro and in vivo. Mutat Res 240:217–225

    Article  CAS  PubMed  Google Scholar 

  • Bakkenist CJ, Drissi R, Wu J, Kastan MB, Dome JS (2004) Disappearance of the telomere dysfunction-induced stress response in fully senescent cells. Cancer Res 64:3748–3752

    Article  CAS  PubMed  Google Scholar 

  • Bartek J, Lukas J (2001) Pathways governing G1/S transition and their response to DNA damage. FEBS Lett 490:117–122

    Article  CAS  PubMed  Google Scholar 

  • Beard SE, Capaldi SR, Gee P (1996) Stress responses to DNA damaging agents in the human colon carcinoma cell line, RKO. Mutat Res 371:1–13

    Article  CAS  PubMed  Google Scholar 

  • Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37:961–976

    Article  CAS  PubMed  Google Scholar 

  • Bland JM, Altman DG (1996) Transformations, means, and confidence intervals. BMJ 312:1079

    CAS  PubMed  Google Scholar 

  • Caicedo M, Jacobs JJ, Reddy A, Hallab NJ (2008) Analysis of metal ion-induced DNA damage, apoptosis, and necrosis in human (Jurkat) T-cells demonstrates Ni2 + and V3 + are more toxic than other metals: Al3+, Be2+, Co2+, Cr3+, Cu2+, Fe3+, Mo5+, Nb5+, Zr2+. J Biomed Mater Res A 86:905–913

    PubMed  Google Scholar 

  • Coates SS, Lehnert BE, Sharma S, Kindell SM, Gary RK (2007) Beryllium induces premature senescence in human fibroblasts. J Pharmacol Exp Ther 322:70–79

    Article  CAS  PubMed  Google Scholar 

  • DeWeese TL, Walsh JC, Dillehay LE, Kessis TD, Hedrick L, Cho KR, Nelson WG (1997) Human papillomavirus E6 and E7 oncoproteins alter cell cycle progression but not radiosensitivity of carcinoma cells treated with low-dose-rate radiation. Int J Radiat Oncol Biol Phys 37:145–154

    CAS  PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    Article  CAS  PubMed  Google Scholar 

  • Franken NA, Van Bree C, Haveman J (2004) Differential response to radiation of TP53-inactivated cells by overexpression of dominant-negative mutant TP53 or HPVE6. Radiat Res 161:504–510

    Article  CAS  PubMed  Google Scholar 

  • Gary RK, Kindell SM (2005) Quantitative assay of senescence-associated beta-galactosidase activity in mammalian cell extracts. Anal Biochem 343:329–334

    Article  CAS  PubMed  Google Scholar 

  • Gilsbach R, Kouta M, Bonisch H, Bruss M (2006) Comparison of in vitro and in vivo reference genes for internal standardization of real-time PCR data. Biotechniques 40:173–177

    Article  CAS  PubMed  Google Scholar 

  • Gire V, Wynford-Thomas D (1998) Reinitiation of DNA synthesis and cell division in senescent human fibroblasts by microinjection of anti-p53 antibodies. Mol Cell Biol 18:1611–1621

    CAS  PubMed  Google Scholar 

  • Gordon T, Bowser D (2003) Beryllium: genotoxicity and carcinogenicity. Mutat Res 533:99–105

    CAS  PubMed  Google Scholar 

  • Gorospe M, Wang X, Holbrook NJ (1998) p53-dependent elevation of p21Waf1 expression by UV light is mediated through mRNA stabilization and involves a vanadate-sensitive regulatory system. Mol Cell Biol 18:1400–1407

    CAS  PubMed  Google Scholar 

  • Hara T, Omura-Minamisawa M, Kang Y, Cheng C, Inoue T (2008) Flavopiridol potentiates the cytotoxic effects of radiation in radioresistant tumor cells in which p53 is mutated or Bcl-2 is overexpressed. Int J Radiat Oncol Biol Phys 71:1485–1495

    CAS  PubMed  Google Scholar 

  • Hart BA, Absher M, Sylwester D (1982) The effect of beryllium on the growth of human lung fibroblasts. Environ Res 27:150–158

    Article  CAS  PubMed  Google Scholar 

  • Helt CE, Cliby WA, Keng PC, Bambara RA, O’Reilly MA (2005) Ataxia telangiectasia mutated (ATM) and ATM and Rad3-related protein exhibit selective target specificities in response to different forms of DNA damage. J Biol Chem 280:1186–1192

    Article  CAS  PubMed  Google Scholar 

  • Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14:501–513

    Article  CAS  PubMed  Google Scholar 

  • Hill R, Bodzak E, Blough MD, Lee PW (2008) p53 Binding to the p21 promoter is dependent on the nature of DNA damage. Cell Cycle 7:2535–2543

    Article  CAS  PubMed  Google Scholar 

  • Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC, Van Meir EG (1999) Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 9:469–479

    Article  CAS  PubMed  Google Scholar 

  • Itahana K, Dimri G, Campisi J (2001) Regulation of cellular senescence by p53. Eur J Biochem 268:2784–2791

    Article  CAS  PubMed  Google Scholar 

  • Jia LQ, Osada M, Ishioka C, Gamo M, Ikawa S, Suzuki T, Shimodaira H, Niitani T, Kudo T, Akiyama M, Kimura N, Matsuo M, Mizusawa H, Tanaka N, Koyama H, Namba M, Kanamaru R, Kuroki T (1997) Screening the p53 status of human cell lines using a yeast functional assay. Mol Carcinog 19:243–253

    Article  CAS  PubMed  Google Scholar 

  • Keshava N, Zhou G, Spruill M, Ensell M, Ong TM (2001) Carcinogenic potential and genomic instability of beryllium sulphate in BALB/c-3T3 cells. Mol Cell Biochem 222:69–76

    Article  CAS  PubMed  Google Scholar 

  • Kessis TD, Slebos RJ, Nelson WG, Kastan MB, Plunkett BS, Han SM, Lorincz AT, Hedrick L, Cho KR (1993) Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proc Natl Acad Sci USA 90:3988–3992

    Article  CAS  PubMed  Google Scholar 

  • Komata T, Kondo Y, Koga S, Ko SC, Chung LW, Kondo S (2000) Combination therapy of malignant glioma cells with 2–5A-antisense telomerase RNA and recombinant adenovirus p53. Gene Ther 7:2071–2079

    Article  CAS  PubMed  Google Scholar 

  • Kubota N, Okada S, Inada T, Ohnishi K, Ohnishi T (2000) Wortmannin sensitizes human glioblastoma cell lines carrying mutant and wild type TP53 gene to radiation. Cancer Lett 161:141–147

    Article  CAS  PubMed  Google Scholar 

  • Lakin ND, Jackson SP (1999) Regulation of p53 in response to DNA damage. Oncogene 18:7644–7655

    Article  CAS  PubMed  Google Scholar 

  • Lehnert NM, Gary RK, Marrone BL, Lehnert BE (2001) Inhibition of normal human lung fibroblast growth by beryllium. Toxicology 160:119–127

    Article  CAS  PubMed  Google Scholar 

  • Li JN, Gorospe M, Chrest FJ, Kumaravel TS, Evans MK, Han WF, Pizer ES (2001) Pharmacological inhibition of fatty acid synthase activity produces both cytostatic and cytotoxic effects modulated by p53. Cancer Res 61:1493–1499

    CAS  PubMed  Google Scholar 

  • Liu Y, Bodmer WF (2006) Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines. Proc Natl Acad Sci USA 103:976–981

    Article  CAS  PubMed  Google Scholar 

  • Mendenhall W (1983) Introduction to probability and statistics. Duxbury Press, Boston, p 342

    Google Scholar 

  • Mirzayans R, Scott A, Cameron M, Murray D (2005) Induction of accelerated senescence by gamma radiation in human solid tumor-derived cell lines expressing wild-type TP53. Radiat Res 163:53–62

    Article  CAS  PubMed  Google Scholar 

  • Noda A, Ning Y, Venable SF, Pereirasmith OM, Smith JR (1994) Cloning of senescent cell-derived inhibitors of DNA-synthesis using an expression screen. Exp Cell Res 211:90–98

    Article  CAS  PubMed  Google Scholar 

  • Olivier J, Johnson WD, Marshall GD (2008) The logarithmic transformation and the geometric mean in reporting experimental IgE results: what are they and when and why to use them? Ann Allergy Asthma Immunol 100:333–337

    Article  PubMed  Google Scholar 

  • Parker VH, Stevens C (1979) Binding of beryllium to nuclear acidic proteins. Chem Biol Interact 26:167–177

    Article  CAS  PubMed  Google Scholar 

  • Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    Article  CAS  PubMed  Google Scholar 

  • Potapova O, Gorospe M, Dougherty RH, Dean NM, Gaarde WA, Holbrook NJ (2000) Inhibition of c-Jun N-terminal kinase 2 expression suppresses growth and induces apoptosis of human tumor cells in a p53-dependent manner. Mol Cell Biol 20:1713–1722

    Article  CAS  PubMed  Google Scholar 

  • Seol DW, Chen Q, Smith ML, Zarnegar R (1999) Regulation of the c-met proto-oncogene promoter by p53. J Biol Chem 274:3565–3572

    Article  CAS  PubMed  Google Scholar 

  • Shay JW, Gazdar AF (1997) Telomerase in the early detection of cancer. J Clin Pathol 50:106–109

    Article  CAS  PubMed  Google Scholar 

  • Shieh SY, Ikeda M, Taya Y, Prives C (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334

    Article  CAS  PubMed  Google Scholar 

  • Stein GH, Drullinger LF, Soulard A, Dulic V (1999) Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol 19:2109–2117

    CAS  PubMed  Google Scholar 

  • Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, Peters G (1998) The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 17:5001–5014

    Article  CAS  PubMed  Google Scholar 

  • The Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Article  Google Scholar 

  • Wang W, Furneaux H, Cheng H, Caldwell MC, Hutter D, Liu Y, Holbrook N, Gorospe M (2000) HuR regulates p21 mRNA stabilization by UV light. Mol Cell Biol 20:760–769

    Article  CAS  PubMed  Google Scholar 

  • Weber HO, Samuel T, Rauch P, Funk JO (2002) Human p14(ARF)-mediated cell cycle arrest strictly depends on intact p53 signaling pathways. Oncogene 21:3207–3212

    Article  CAS  PubMed  Google Scholar 

  • Webley K, Bond JA, Jones CJ, Blaydes JP, Craig A, Hupp T, Wynford-Thomas D (2000) Posttranslational modifications of p53 in replicative senescence overlapping but distinct from those induced by DNA damage. Mol Cell Biol 20:2803–2808

    Article  CAS  PubMed  Google Scholar 

  • Witschi HP, Aldridge WN (1968) Uptake, distribution and binding of beryllium to organelles of the rat liver cell. Biochem J 106:811–820

    CAS  PubMed  Google Scholar 

  • Zhan Q, Carrier F, Fornace AJ Jr (1993) Induction of cellular p53 activity by DNA-damaging agents and growth arrest. Mol Cell Biol 13:4242–4250

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Bruce Lehnert, Dr. David Ward, and Dr. Hokwon Cho for helpful discussions, and Ms. Swapna Mudireddy for pilot studies to evaluate the feasibility of quantifying intracellular beryllium by ICP-MS. This work was funded by National Institutes of Health grant P20 RR-016464 from the INBRE Program of the National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald K. Gary.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10534_2010_9352_MOESM1_ESM.tif

Fig. S1: Total cell number declines over time at a logarithmic rate in A172 cells treated with a cytotoxic agent (etoposide). Mean ± standard deviation, error bars are not visible because they are narrower than the filled circle symbol (TIFF 76 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorjala, P., Gary, R.K. Beryllium sulfate induces p21CDKN1A expression and a senescence-like cell cycle arrest in susceptible cancer cell types. Biometals 23, 1061–1073 (2010). https://doi.org/10.1007/s10534-010-9352-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9352-y

Keywords

Navigation