Skip to main content

Advertisement

Log in

Iron cycling in the anoxic cryo-ecosystem of Antarctic Lake Vida

  • Biogeochemistry Letters
  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Iron redox cycling in metal-rich, hypersaline, anoxic brines plays a central role in the biogeochemical evolution of life on Earth, and similar brines with the potential to harbor life are thought to exist elsewhere in the solar system. To investigate iron biogeochemical cycling in a terrestrial analog we determined the iron redox chemistry and isotopic signatures in the cryoencapsulated liquid brines found in frozen Lake Vida, East Antarctica. We used both in situ voltammetry and the spectrophotometric ferrozine method to determine iron speciation in Lake Vida brine (LVBr). Our results show that iron speciation in the anoxic LVBr was, unexpectedly, not free Fe(II). Iron isotope analysis revealed highly depleted values of −2.5‰ for the ferric iron of LVBr that are similar to iron isotopic signatures of Fe(II) produced by dissimilatory iron reduction. The presence of Fe(III) in LVBr therefore indicates dynamic iron redox cycling beyond iron reduction. Furthermore, extremely low δ18O–SO4 2− values (−9.7‰) support microbial iron-sulfur cycling reactions. In combination with evidence for chemodenitrification resulting in iron oxidation, we conclude that coupled abiotic and biotic redox reactions are driving the iron cycle in Lake Vida brine. Our findings challenge the current state of knowledge of anoxic brine chemistry and may serve as an analogue for icy brines found in the outer reaches of the solar system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Assonov SS, Brenninkmeijer CAM (2005) Reporting small Δ17O values: existing definitions and concepts. Rapid Commun Mass Spectrom 19(5):627–636

    Article  Google Scholar 

  • Bao H (2006) Purifying barite for oxygen isotope measurement by dissolution and reprecipitation in a chelating solution. Anal Chem 78(1):304–309

    Article  Google Scholar 

  • Bao H, Rumble D III, Lowe DR (2007) The five stable isotope compositions of fig tree barites: implications on sulfur cycle in ca. 3.2 Ga oceans. Geochim Cosmochim Ac 71(20):4868–4879

    Article  Google Scholar 

  • Bao H, Lyons JR, Zhou C (2008) Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature 453(7194):504–506

    Article  Google Scholar 

  • Beard BL et al (1999) Iron isotope biosignatures. Science 285:1889–1892

    Article  Google Scholar 

  • Brantley SL et al (2004) Fe isotopic fractionation during mineral dissolution with and without bacteria. Geochim Cosmochim Ac 68(15):3189–3204

    Article  Google Scholar 

  • Brendel PJ, Luther GW III (1995) Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and S(-II) in porewaters of marine and fresh-water sediments. Environ Sci Technol 29(3):751–761

    Article  Google Scholar 

  • Bullen TD, White AF, Childs CW, Vivit DV, Schulz MS (2001) Demonstration of significant abiotic iron isotope fractionation in nature. Geology 29(8):699–702

    Article  Google Scholar 

  • Cawley KM et al (2016) Characterization of dissolved organic material in the interstitial brine of Lake Vida, Antarctica. Geochim Cosmochim Ac 183:63–78

    Article  Google Scholar 

  • Craddock PR, Dauphas N (2010) Iron isotopic compositions of geological reference materials and chondrites. Geostand Geoanal Res 35(1):101–123

    Article  Google Scholar 

  • Crosby HA, Johnson CM, Roden EE, Beard BL (2005) Coupled Fe(II)–Fe(III) electron and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction. Environ Sci Technol 39(17):6698–6704

    Article  Google Scholar 

  • Doran PT et al (2002) Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986–2000. J Geophys Res 107(D24):4772

    Article  Google Scholar 

  • Doran PT, Fritsen CH, McKay CP, Priscu JC, Adams EE (2003) Formation and character of an ancient 19-m ice cover and underlying trapped brine in an “ice-sealed” east Antarctic lake. Proc Natl Acad Sci USA 100(1):26–31

    Article  Google Scholar 

  • Doran PT et al (2008) Entry approach into pristine ice-sealed lakes—Lake Vida, East Antarctica, a model ecosystem. Limnol Oceanogr Methods 6:542–547

    Article  Google Scholar 

  • Dugan HA et al (2015) Subsurface imaging reveals a confined aquifer beneath an ice-sealed Antarctic lake. Geophy Res lett 42:96–103

    Article  Google Scholar 

  • Feng D, Roberts HH (2011) Geochemical characteristics of the barite deposits at cold seeps from the northern Gulf of Mexico continental slope. Earth Planet Sci Lett 309(1–2):89–99

    Google Scholar 

  • Fountain AG, Nylen TH, Monaghan A, Basagic HJ, Bromwich D (2010) Snow in the McMurdo dry valleys, Antarctica. Int J Climatol 30:633–642

    Google Scholar 

  • Gledhill M, van den Berg CMG (1994) Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Mar Chem 47(1):41–54

    Article  Google Scholar 

  • Green WJ, Lyons WB (2009) The saline lakes of the McMurdo dry valleys, Antarctica. Aquat Geochem 15(1–2):321–348

    Article  Google Scholar 

  • Ionescu D, Heim C, Polerecky L, Thiel V, de Beer D (2015) Biotic and abiotic oxidation and reduction of iron at circumneutral pH are inseparable processes under natural conditions. Geomicrobiol J 32(3–4):221–230

    Article  Google Scholar 

  • Johnson CM, Beard BL, Roden EE (2008) The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth. Annu Rev Earth Planet Sci 36(1):457–493

    Article  Google Scholar 

  • Jones ME, Beckler JS, Taillefert M (2011) The flux of soluble organic-iron(III) complexes from sediments represents a source of stable iron(III) to estuarine waters and to the continental shelf. Limnol Oceangr 56(5):1811–1823

    Article  Google Scholar 

  • Jones LC, Peters B, Lezama Pacheco JS, Casciotti KL, Fendorf S (2015) Stable isotopes and iron oxide mineral products as markers of chemodenitrification. Environ Sci Technol 49(6):3444–3452

    Article  Google Scholar 

  • Kenig F et al (2016) Perchlorate and volatiles of the brine of Lake Vida (Antarctica): implication for the in situ analysis of Mars sediments. J Geophy Res Planets 121(7):1190–1203

    Article  Google Scholar 

  • Klueglein N et al (2014) Potential role of nitrite for abiotic Fe(II) oxidation and cell encrustation during nitrate reduction by denitrifying bacteria. Appl Environ Microbiol 80(3):1051–1061

    Article  Google Scholar 

  • Kuhn E et al (2014) Brine assemblages of ultrasmall microbial cells within the ice cover of Lake Vida, Antarctica. Appl Environ Microbiol 80(12):3687–3698

    Article  Google Scholar 

  • Liu X, Millero FJ (2002) The solubility of iron in seawater. Mar Chem 77(1):43–54

    Article  Google Scholar 

  • Luther GW III et al (2008) Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes: laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA). Mar Chem 108(3–4):221–235

    Article  Google Scholar 

  • Marx JG, Carpenter SD, Deming JW (2009) Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can J Microbiol 55(1):63–72

    Article  Google Scholar 

  • Mikucki JA et al (2009) A contemporary microbially maintained subglacial ferrous “ocean”. Science 324(5925):397–400

    Article  Google Scholar 

  • Millero FJ, Gonzalez-Davila M, Santana-Casiano JM (1995) Reduction of Fe(III) with sulfite in natural waters. J Geophys Res 100(D4):7235–7244

    Article  Google Scholar 

  • Murray AE et al (2012) Microbial life at −13 °C in the brine of an ice-sealed Antarctic lake. Proc Natl Acad Sci USA 109(50):20626–20631

    Article  Google Scholar 

  • Ojha L et al (2015) Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat Geosci 8(11):829–832

    Article  Google Scholar 

  • Ostrom NE, Gandhi H, Trubl G, Murray AE (2016) Chemodenitrification in the cryoecosystem of Lake Vida, Victoria Valley, Antarctica. Geobiology. doi:10.1111/gbi.12190

    Google Scholar 

  • O’Sullivan DW, Hanson AK, Kester DR (1995) Stopped flow luminol chemiluminescence determination of Fe(II) and reducible iron in seawater at subnanomolar levels. Mar Chem 49:65–77

    Article  Google Scholar 

  • Peters B et al (2014) Stable isotope analyses of NO2 , NO3 , and N2O in the hypersaline ponds and soils of the McMurdo dry valleys, Antarctica. Geochim Cosmochim Ac 135(C):87–101

    Article  Google Scholar 

  • Salvatore MR et al (2013) Development of alteration rinds by oxidative weathering processes in Beacon Valley, Antarctica, and implications for Mars. Geochim Cosmochim Ac 115(C):137–161

    Article  Google Scholar 

  • Samarkin VA et al (2010) Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat Geosci 3(5):341–344

    Article  Google Scholar 

  • Stevens EWN et al (2015) Barite encrustation of benthic sulfur-oxidizing bacteria at a marine cold seep. Geobiology 13(6):588–603

    Article  Google Scholar 

  • Turchyn AV, Sivan O, Schrag DP (2006) Oxygen isotopic composition of sulfate in deep sea pore fluid: evidence for rapid sulfur cycling. Geobiology 4:191–201

    Article  Google Scholar 

  • Viollier E, Inglett PW, Hunter K, Roychoudhury AN, Van Cappellen P (2000) The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl Geochem 15:785–790

    Article  Google Scholar 

  • Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4(10):752–764

    Article  Google Scholar 

  • Zavala K, Leitch AM, Fisher GW (2011) Silicic segregations of the Ferrar Dolerite Sills, Antarctica. J Petrol 52(10):1927–1964

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this research is gratefully acknowledged from National Science Foundation Awards ANT-0739681 (to A.E.M.) and ANT-0739698 (to P.T.D. and F.K.). N.E.O. gratefully acknowledges support from the NSF Geobiology and Low Temperature Geochemistry program (Grants 1053432 and 1348935). This work was also funded in part by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FCO2-07ER64494) to N.E.O. Additional support was provided by NASA–NASA Astrobiology Institutes “Icy Worlds” (to A.E.M.) and “Water and Astrobiology” at the University of Hawaii (to B.T.G.). Lastly, the National Science Foundation McMurdo LTER Award (ANT-1041742, to P.T.D.) supported the Lake Hoare voltammetry research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison E. Murray.

Additional information

Responsible Editor: Stuart Grandy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 910 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proemse, B.C., Murray, A.E., Schallenberg, C. et al. Iron cycling in the anoxic cryo-ecosystem of Antarctic Lake Vida. Biogeochemistry 134, 17–27 (2017). https://doi.org/10.1007/s10533-017-0346-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-017-0346-5

Keywords

Navigation