Skip to main content

Advertisement

Log in

Experimental removal and addition of leaf litter inputs reduces nitrate production and loss in a lowland tropical forest

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Environmental perturbations such as changes in land use, climate, and atmospheric carbon dioxide concentrations may alter organic matter inputs to surface soils. While the carbon (C) cycle response to such perturbations has received considerable attention, potential responses of the soil nitrogen (N) cycle to changing organic matter inputs have been less well characterized. Changing litter inputs to surface to soils may alter the soil N cycle directly, by controlling N substrate availability, or indirectly, via interactions with soil C biogeochemistry. We investigated soil N-cycling responses to a leaf litter manipulation in a lowland tropical forest using isotopic and molecular techniques. Both removing and doubling leaf litter inputs decreased the size of the soil nitrate pool, gross nitrification rates, and the relative abundance of ammonia-oxidizing microorganisms. Gross nitrification rates were correlated with the relative abundance of ammonia-oxidizing archaea, and shifts in the N-cycling microbial community composition correlated with concurrent changes in edaphic properties, notably pH and C:N ratios. These results highlight the importance of understanding coupled biogeochemical cycles in global change scenarios and suggest that environmental perturbations that alter organic matter inputs in tropical forests could reduce inorganic N losses to surface waters and the atmosphere by limiting nitrate production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aber JD, Melillo JM (1982) Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content. Can J Bot 60:2263–2269. doi:10.1139/b82-277

    Article  Google Scholar 

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Article  Google Scholar 

  • Attiwill PM, Adams MA (1993) Nutrient cycling in forests. New Phytol 124:561–582. doi:10.1111/j.1469-8137.1993.tb03847.x

    Article  Google Scholar 

  • Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917. doi:10.1038/ismej.2010.171

    Article  Google Scholar 

  • Bern CR, Townsend AR, Farmer GL (2005) Unexpected dominance of parent-material strontium in a tropical forest on highly weathered soils. Ecology 86:626–632

    Article  Google Scholar 

  • Berrange JP, Thorpe RS (1988) The geology, geochemistry, and emplacement of the Cretaceous–Tertiary ophiolitic Nicoya Complex of the Osa Peninsula, southern Costa Rica. Tectonophysics 147:193–220

    Article  Google Scholar 

  • Bolker BM (2008) Ecological models and data in R. Princeton University Press, Princeton

    Google Scholar 

  • Bru D, Ramette A, Saby NPA, Dequiedt S, Ranjard L, Jolivet C, Arrouays D, Philippot L (2011) Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale. ISME J 5:532–542. doi:10.1038/ismej.2010.130

    Article  Google Scholar 

  • Butterbach-Bahl K, Nemitz E, Zaehle S, Billen G, Boeckx P, Erisman JW, Garnier J, Upstill-Goddard R, Kreuzer M, Oenema O, Reis S, Schaap M, Simpson D, de Vries W, Winiwarter W, Sutton MA (2011) Nitrogen as a threat to the European greenhouse balance. In: Sutton MA, Howard CM, Erisman JW (eds) European nitrogen assessment: sources effects and policy perspectives. Cambridge University Press, Cambridge, pp 434–462

    Chapter  Google Scholar 

  • Cabrera ML, Beare MH (1993) Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Sci Soc Am J 57:1007–1012

    Article  Google Scholar 

  • Carney KM, Matson PA, Bohannan BJM (2004) Diversity and composition of tropical soil nitrifiers across a plant diversity gradient and among land-use types. Ecol Lett 7:684–694. doi:10.1111/j.1461-0248.2004.00628.x

    Article  Google Scholar 

  • Clark DA (2004) Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition. Philos Trans R Soc Lond Ser B 359:477–491

    Article  Google Scholar 

  • Clark DA, Piper SC, Keeling CD, Clark DB (2003) Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proc Natl Acad Sci USA 100:5852–5857. doi:10.1073/pnas.0935903100

    Article  Google Scholar 

  • Cleveland CC, Townsend AR (2006) Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc Natl Acad Sci USA 103:10316–10321

    Article  Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Fischer JCV, Elseroad A, Wasson MF (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cycles 13:623–645

    Article  Google Scholar 

  • Cleveland CC, Reed SC, Townsend AR (2006) Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology 87:492–503

    Article  Google Scholar 

  • Cleveland CC, Townsend AR, Taylor P, Alvarez-Clare S, Bustamante MMC, Chuyong G, Dobrowski SZ, Grierson P, Harms KE, Houlton BZ, Marklein A, Parton W, Porder S, Reed SC, Sierra CA, Silver WL, Tanner EVJ, Wieder WR (2011) Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecol Lett 14:939–947. doi:10.1111/j.1461-0248.2011.01658.x

    Article  Google Scholar 

  • Colman BP, Fierer N, Schimel JP (2007) Abiotic nitrate incorporation in soil: is it real? Biogeochemistry 84:161–169. doi:10.1007/s10533-007-9111-5

    Article  Google Scholar 

  • Corre MD, Dechert G, Veldkamp E (2006) Soil nitrogen cycling following Montane forest conversion in Central Sulawesi, Indonesia. Soil Sci Soc Am J 70:359–366. doi:10.2136/sssaj2005.0061

    Article  Google Scholar 

  • Davidson EA, de Carvalho JR, Figueira AM, Ishida FY, Ometto JPHB, Nardoto GB, Saba RT, Hayashi SN, Leal EC, Vieira ICG, Martinelli LA (2007) Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447:995–996

    Article  Google Scholar 

  • Davidson EA, Hart SC, Shanks CA, Firestone MK (1991) Measuring gross nitrogen mineralization, immobilization, and nitrification by 15 N isotopic pool dilution in intact soil cores. J Soil Sci 42:335–349

    Article  Google Scholar 

  • De Boer W, Kowalchuk GA (2001) Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol Biochem 33:853–866

    Article  Google Scholar 

  • Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W (2009) Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev 33:855–869. doi:10.1111/j.1574-6976.2009.00179.x

    Article  Google Scholar 

  • Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206. doi:10.1126/science.281.5374.200

    Article  Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive earth’s biogeochemical cycles. Science 320:1034–1039. doi:10.1126/science.1153213

    Article  Google Scholar 

  • Fazzolari É, Nicolardot B, Germon JC (1998) Simultaneous effects of increasing levels of glucose and oxygen partial pressures on denitrification and dissimilatory nitrate reduction to ammonium in repacked soil cores. Eur J Soil Biol 34:47–52. doi:10.1016/s1164-5563(99)80006-5

    Article  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631. doi:10.1073/pnas.0507535103

    Article  Google Scholar 

  • Fierer N, Schimel JP (2003) A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Sci Soc Am J 67:798–805

    Article  Google Scholar 

  • Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC (2009) Global patterns in belowground communities. Ecol Lett 12:1238–1249. doi:10.1111/j.1461-0248.2009.01360.x

    Article  Google Scholar 

  • Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev Camb Philos Soc 63:433–462. doi:10.1111/j.1469-185X.1988.tb00725.x

    Article  Google Scholar 

  • Francis CA, Beman JM, Kuypers MMM (2007) New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J 1:19–27

    Article  Google Scholar 

  • Garcia-Montiel DC, Melillo JM, Steudler PA, Cerri CC, Piccolo MC (2003) Carbon limitations to nitrous oxide emissions in a humid tropical forest of the Brazilian Amazon. Biol Fertil Soils 38:267–272

    Article  Google Scholar 

  • Gerards S, Duyts H, Laanbroek HJ (1998) Ammonium-induced inhibition of ammonium-starved Nitrosomonas europaea cells in soil and sand slurries. FEMS Microbiol Ecol 26:269–280. doi:10.1111/j.1574-6941.1998.tb00511.x

    Article  Google Scholar 

  • Hedin LO, Brookshire ENJ, Menge DNL, Barron AR (2009) The nitrogen paradox in tropical forest ecosystems. Annu Rev Ecol Evol Syst 40:613–635

    Article  Google Scholar 

  • Houlton BZ, Sigman DM, Hedin LO (2006) Isotopic evidence for large gaseous nitrogen losses from tropical rainforests. Proc Natl Acad Sci USA 103:8745–8750

    Article  Google Scholar 

  • Houlton BZ, Wang YP, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–334

    Article  Google Scholar 

  • Hungate BA, Dukes JS, Shaw R, Luo Y, Field CB (2003) Nitrogen and climate change. Science 302:1512–1513

    Article  Google Scholar 

  • Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3:315–322. doi:10.1038/ngeo844

    Article  Google Scholar 

  • Kirkham D, Bartholomew WV (1954) Equations for following nutrient transformations in soil, utilizing tracer data. Soil Sci Soc Am Proc 18:33–34

    Article  Google Scholar 

  • Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257. doi:10.1890/05-0150

    Article  Google Scholar 

  • Lebauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  Google Scholar 

  • Leff JW, Wieder WR, Taylor PG, Townsend AR, Nemergut DR, Grandy AS, Cleveland CC (2012) Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest. Global Change Biol. doi:10.1111/j.1365-2486.2012.02749.x

    Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809. doi:10.1038/nature04983

    Article  Google Scholar 

  • Likens G, Bormann F (1995) Biogeochemistry of a forested ecosystem, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Likens GE, Bormann FH, Johnson NM (1969) Nitrification: importance to nutrient losses from a cutover forested ecosystem. Science 163:1205–1206. doi:10.1126/science.163.3872.1205

    Article  Google Scholar 

  • Liu LL, Greaver TL (2010) A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol Lett 13:819–828. doi:10.1111/j.1461-0248.2010.01482.x

    Article  Google Scholar 

  • Lloyd J, Farquhar GD (2008) Effects of rising temperatures and CO2 on the physiology of tropical forest trees. Philos Trans R Soc B 363:1811–1817. doi:10.1098/rstb.2007.0032

    Article  Google Scholar 

  • Lopez-Gutierrez JC, Henry S, Hallet S, Martin-Laurent F, Catroux G, Philippot L (2004) Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. J Microbiol Methods 57:399–407. doi:10.1016/j.mimet.2004.02.009

    Article  Google Scholar 

  • Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739

    Article  Google Scholar 

  • Martinelli L, Piccolo M, Townsend A, Vitousek P, Cuevas E, McDowell W, Robertson G, Santos O, Treseder K (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65

    Google Scholar 

  • Mo J, Brown S, Peng S, Kong G (2003) Nitrogen availability in disturbed, rehabilitated and mature forests of tropical China. For Ecol Manag 175:573–583. doi:10.1016/s0378-1127(02)00220-7

    Article  Google Scholar 

  • Nardoto GB, Ometto JPHB, Ehleringer JR, Higuchi N, Bustamante MMD, Martinelli LA (2008) Understanding the influences of spatial patterns on N availability within the Brazilian Amazon Forest. Ecosystems 11:1234–1246

    Article  Google Scholar 

  • Nave LE, Vance ED, Swanston CW, Curtis PS (2009) Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N-mineralization. Geoderma 153:231–240. doi:10.1016/j.geoderma.2009.08.012

    Article  Google Scholar 

  • Neill C, Piccolo MC, Cerri CC, Steudler PA, Melillo JM, Brito M (1997) Net nitrogen mineralization and net nitrification rates in soils following deforestation for pasture across the southwestern Brazilian Amazon Basin landscape. Oecologia 110:243–252

    Article  Google Scholar 

  • Neill C, Piccolo MC, Melillo JM, Steudler PA, Cerri CC (1999) Nitrogen dynamics in Amazon forest and pasture soils measured by N-15 pool dilution. Soil Biol Biochem 31:567–572

    Article  Google Scholar 

  • Nicol GW, Schleper C (2006) Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol 14:207–212. doi:10.1016/j.tim.2006.03.004

    Article  Google Scholar 

  • Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10:2966–2978. doi:10.1111/j.1462-2920.2008.01701.x

    Article  Google Scholar 

  • Nobre AD, Keller M, Crill PM, Harriss RC (2001) Short-term nitrous oxide profile dynamics and emissions response to water, nitrogen and carbon additions in two tropical soils. Biol Fertil Soils 34:363–373

    Article  Google Scholar 

  • Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5:787–797. doi:10.1046/j.1462-2920.2003.00476.x

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2010) Vegan: Community Ecology Package. R package version 1.17-3. http://CRAN.R-project.org/package=vegan

  • Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–364

    Article  Google Scholar 

  • Philippot L, Andert J, Jones CM, Bru D, Hallin S (2011) Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N(2)O emissions from soil. Glob Change Biol 17:1497–1504. doi:10.1111/j.1365-2486.2010.02334.x

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2009). nlme: linear and nonlinear mixed effects models. R package version 3.1-96

  • Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103. doi:10.1016/s0923-2508(00)01172-4

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rastetter EB (2011) Modeling coupled biogeochemical cycles. Front Ecol Environ 9:68–73. doi:10.1890/090223

    Article  Google Scholar 

  • Sayer EJ, Tanner EVJ (2010) Experimental investigation of the importance of litterfall in lowland semi-evergreen tropical forest nutrient cycling. J Ecol 98:1052–1062. doi:10.1111/j.1365-2745.2010.01680.x

    Article  Google Scholar 

  • Sayer EJ, Powers JS, Tanner EVJ (2007) Increased litterfall in tropical forests boosts the transfer of soil CO(2) to the atmosphere. PLOS One 2:e1299. doi:10.1371/journal.pone.0001299

  • Sayer EJ, Heard MS, Grant HK, Marthews TR, Tanner EVJ (2011) Soil carbon release enhanced by increased tropical forest litterfall. Nat Clim Change 1:304–307. doi:10.1038/nclimate1190

    Article  Google Scholar 

  • Sayer E, Joseph Wright S, Tanner E, Yavitt J, Harms K, Powers J, Kaspari M, Garcia M, Turner B (2012) Variable Responses of lowland tropical forest nutrient status to fertilization and litter manipulation. Ecosystems 15:387–400. doi:10.1007/s10021-011-9516-9

    Article  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry. An Analysis of Global Change. 2 edn. Academic Press, San Diego

  • Schlesinger WH, Cole JJ, Finzi AC, Holland EA (2011) Introduction to coupled biogeochemical cycles. Front Ecol Environ 9:5–8. doi:10.1890/090235

    Article  Google Scholar 

  • Silver WH, Herman DJ, Firestone MK (2001) Dissimilatory nitrate reduction to ammonium in upland forest soils. Ecology 82:2410–2416

    Article  Google Scholar 

  • Silver WL, Thompson AW, Reich A, Ewel JJ, Firestone MK (2005) Nitrogen cycling in tropical plantation forests: potential controls on nitrogen retention. Ecol Appl 15:1604–1614

    Article  Google Scholar 

  • Stark JM, Hart SC (1996) Diffusion technique for preparing salt solutions, kjeldahl digests, and persulfate digests for N-15 analysis. Soil Sci Soc Am J 60:1846–1855

    Article  Google Scholar 

  • Stark JM, Hart SC (1997) High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature 385:61–64

    Article  Google Scholar 

  • Taylor PG, Townsend AR (2010) Stoichiometric control of organic carbon-nitrate relationships from soils to the sea. Nature 464:1178–1181. doi:10.1038/nature08985

    Article  Google Scholar 

  • Templer PH, Silver WL, Pett-Ridge J, DeAngelis KM, Firestone MK (2008) Plant and microbial controls on the nitrogen retention and loss in a humid tropical forest. Ecology 89:3030–3040. doi:10.1890/07-1631.1

    Article  Google Scholar 

  • Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 179–224

    Google Scholar 

  • Tourna M, Freitag TE, Nicol GW, Prosser JI (2008) Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol 10:1357–1364. doi:10.1111/j.1462-2920.2007.01563.x

    Article  Google Scholar 

  • Townsend AR, Asner GP, Cleveland CC (2008) The biogeochemical heterogeneity of tropical forests. Trends Ecol Evol 23:424–431

    Article  Google Scholar 

  • Turner BL, Romero TE (2009) Short-term changes in extractable inorganic nutrients during storage of tropical rain forest soils. Soil Sci Soc Am J 73:1972–1979. doi:10.2136/sssaj2008.0407

    Article  Google Scholar 

  • Vasconcelos SS, Zarin DJ, Capanu M, Littell R, Davidson EA, Ishida FY, Santos EB, Araujo MM, Aragao DV, Rangel-Vasconcelos LGT, Oliveira FD, McDowell WH, de Carvalho CJR (2004) Moisture and substrate availability constrain soil trace gas fluxes in an eastern Amazonian regrowth forest. Glob Biogeochem Cycles 18:GB2009

    Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York, ISBN 0-387-95457-0

  • Vitousek PM (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572

    Article  Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285–298

    Article  Google Scholar 

  • Vitousek PM, Hobbie S (2000) Heterotrophic nitrogen fixation in decomposing litter: patterns and regulation. Ecology 81:2366–2376. doi:10.2307/177460

    Article  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and sea: how can it occur. Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57:1–45. doi:10.1023/a:1015798428743

    Article  Google Scholar 

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol Appl 20:5–15

    Article  Google Scholar 

  • Wieder WR, Cleveland CC, Townsend AR (2009) Controls over leaf litter decomposition in wet tropical forests. Ecology 90:3333–3341

    Article  Google Scholar 

  • Wieder WR, Cleveland CC, Townsend AR (2011) Throughfall exclusion and leaf litter addition drive higher rates of soil nitrous oxide emissions from a lowland wet tropical forest. Glob Change Biol 17:3195–3207. doi:10.1111/j.1365-2486.2011.02426.x

    Article  Google Scholar 

  • Wood TE, Lawrence D, Clark DA, Chazdon RL (2009) Rain forest nutrient cycling and productivity in response to large-scale litter manipulation. Ecology 90:109–121. doi:10.1890/07-1146.1

    Article  Google Scholar 

  • Yang WH, Herman D, Liptzin D, Silver WL (2012) A new approach for removing iron interference from soil nitrate analysis. Soil Biol Biochem 46:123–128. doi:10.1016/j.soilbio.2011.12.003

    Article  Google Scholar 

Download references

Acknowledgments

We thank W. Combronero-Castro for his invaluable assistance with fieldwork in Costa Rica. We thank M. Jimenez and the late H. Michaud of the Drake Bay Wilderness Camp for providing field access and logistical support, and we also thank F. Campos Rivera, the Organización para Estudios Tropicales (OET), and the Ministerio de Ambiente y Energia (MINAE) for assisting with research permits and logistics in Costa Rica. C. Seibold, C. Washenberger, and R. Kimmel at CU Boulder assisted with the laboratory analyses. W. Yang at UC Berkley provided invaluable assistance with data analysis. This work was supported by grants from the National Science Foundation to W.W., C.C., D.N., and A.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Wieder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 62 kb)

Supplementary material 2 (DOC 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wieder, W.R., Cleveland, C.C., Taylor, P.G. et al. Experimental removal and addition of leaf litter inputs reduces nitrate production and loss in a lowland tropical forest. Biogeochemistry 113, 629–642 (2013). https://doi.org/10.1007/s10533-012-9793-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-012-9793-1

Keywords

Navigation