Skip to main content

Advertisement

Log in

Seasonal variation in nitrogen uptake and turnover in two high-elevation soils: mineralization responses are site-dependent

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

In arctic and alpine ecosystems, soil nitrogen (N) dynamics can differ markedly between winter and summer months, and nitrogen losses can be measurable during the spring and fall transitions. To explore the effect of seasonality on biogeochemical processes in a temperate alpine environment, we used a combination of field incubations (year-round) and 15N tracer additions (late fall, early spring, summer) to characterize soil N dynamics in a wet and dry meadow in the Sierra Nevada, California. The snowmelt to early summer season marked a period of high 15N uptake and turnover in the two soils, coincident with the increase in microbial N pools at the start of snowmelt (wet and dry meadow); an increase in net N mineralization and net nitrification as snowmelt progressed (wet meadow only); and measureable net production of 15N-NH4 + in mid-summer (wet and dry meadow). Whereas fluctuations in microbial biomass were generally synchronous between the wet and dry meadow soils, only wet meadow soils appeared to mineralize N in response to declines in the microbial N pool. Net N mineralization and net nitrification rates in the dry meadow soil were negligible on all but one sampling date, in spite of periodic decreases in biomass of up to 60%. Across both sites, high 15N recoveries in microbial biomass N, rapid 15N-NH4 + turnover, and low or negative net 15N-NH4 + fluxes suggested tight cycling of N, particularly in the late fall and early spring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bilbrough CJ, Welker JM, Bowman WD (2000) Early spring nitrogen uptake by snow-covered plants: a comparison of arctic and alpine plant function under the snowpack. Arct Antarct Alp Res 42:404–411. doi:10.2307/1552389

    Article  Google Scholar 

  • Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr 75:139–157. doi:10.1890/04-0988

    Article  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. doi:10.1016/0038-0717(85)90144-0

    Article  Google Scholar 

  • Brooks PD, Williams MW (1999) Snowpack controls on nitrogen cycling and export in seasonally snow-covered catchments. Hydrol Process 13:2177–2190. doi:10.1002/(SICI)1099-1085(199910)13:14/15<2177::AID-HYP850>3.0.CO;2-V

    Article  Google Scholar 

  • Brooks PD, Williams MW, Schmidt SK (1996) Microbial activity under alpine snowpacks. Biogeochemistry 32:93–115. doi:10.1007/BF00000354

    Article  Google Scholar 

  • Brooks PD, Schmidt SK, Williams MW (1997) Winter production of CO2 and N2O from alpine tundra: environmental controls and relationship to inter-system C and N fluxes. Oecologia 110:403–413

    Google Scholar 

  • Brooks PD, Williams MW, Schmidt SK (1998) Inorganic nitrogen and microbial biomass dynamics before and during snowmelt. Biogeochemistry 43:1–15. doi:10.1023/A:1005947511910

    Article  Google Scholar 

  • Brooks PD, Campbell DH, Tonnessen KA, Heuer K (1999) Natural variability in N export from headwater catchments: snow cover controls on ecosystem N retention. Hydrol Process 13:2191–2201. doi:10.1002/(SICI)1099-1085(199910)13:14/15<2191::AID-HYP849>3.0.CO;2-L

    Article  Google Scholar 

  • Campbell DH, Baron JS, Tonnessen KA, Brooks PD, Schuster PF (2000) Controls on nitrogen flux in alpine/subalpine watersheds of Colorado. Water Resour Res 36:37–47. doi:10.1029/1999WR900283

    Article  Google Scholar 

  • Campbell DH, Kendall C, Chang CCY, Silva SR, Tonnessen KA (2002) Pathways for nitrate release from an alpine watershed: determination using δ15N and δ18O. Water Resour Res 38(5):1052. doi:10.1029/2001WR000294

    Article  Google Scholar 

  • Davidson EA, Stark JM, Firestone MK (1990) Microbial production and consumption of nitrate in an annual grassland. Ecology 71:1968–1975. doi:10.2307/1937605

    Article  Google Scholar 

  • DeLuca TH, Keeney DR, McCarty GW (1992) Effect of freeze-thaw events on mineralization of soil nitrogen. Soil Biol Biochem 14:116–120

    Google Scholar 

  • DiStefano JF, Gholz HL (1986) A proposed use of ion exchange resins to measure nitrogen mineralization and nitrification in intact soil cores. Commun Soil Sci Plan 17:989–998

    Article  Google Scholar 

  • Doyle AP, Weintraub MN, Schimel JP (2004) Persulfate digestion and simultaneous colorimetric analysis of carbon and nitrogen in soil extracts. Soil Sci Soc Am J 68:669–676

    Google Scholar 

  • Edwards AMC, Cresser MS (1992) Freezing and its effect on chemical and biological properties of soil. In: Stewart BA (ed) Advances in soil science. Springer, New York, pp 59–70

    Google Scholar 

  • Edwards KA, McCulloch J, Kershaw GP, Jeffries RL (2006) Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring. Soil Biol Biochem 38:2843–2851. doi:10.1016/j.soilbio.2006.04.042

    Article  Google Scholar 

  • Fahnestock JT, Jones MH, Brooks PD, Walker DA, Welker JM (1998) Winter and spring CO2 efflux from tundra communities of Northern Alaska. J Geophys Res 103:29023–29027. doi:10.1029/98JD00805

    Article  Google Scholar 

  • Fisk MC, Schmidt SK (1995) Nitrogen mineralization and microbial biomass nitrogen dynamics in three alpine tundra communities. Soil Sci Soc Am J 59:1036–1043

    Google Scholar 

  • Fisk MC, Schmidt SK, Seasteadt T (1998) Topographic patterns of above- and below ground production and nitrogen cycling in alpine tundra. Ecology 79:2253–2266

    Google Scholar 

  • Galen C, Stanton ML (1995) Responses of snowbed plant species to changes in growing-season length. Ecology 76:1546–1557. doi:10.2307/1938156

    Article  Google Scholar 

  • Giblin AE, Nadelhoffer KJ, Shaver GR, Laundre JA, McKerrow AJ (1991) Biogeochemical diversity along a riverside toposequence in arctic Alaska. Ecol Monogr 61:415–435. doi:10.2307/2937049

    Article  Google Scholar 

  • Groffman PM, Hardy JP, Nolan S, Fitzhugh RD, Driscoll CT, Fahey TJ (1999) Snow depth, soil frost and nutrient loss in a northern hardwood forest. Hydrol Process 13:2275–2286. doi:10.1002/(SICI)1099-1085(199910)13:14/15<2275::AID-HYP858>3.0.CO;2-A

    Article  Google Scholar 

  • Grogan P, Jonasson S (2003) Controls on annual nitrogen cycling in the understory of a subarctic birch forest. Ecology 84:202–218. doi:10.1890/0012-9658(2003)084[0202:COANCI]2.0.CO;2

    Article  Google Scholar 

  • Hart SC, Gunther AJ (1989) In situ estimates of annual net nitrogen mineralization and nitrification in a subarctic watershed. Oecologia 80:284–288

    Google Scholar 

  • Hart SC, Firestone MK, Paul EA, Smith JL (1993) Flow and fate of soil nitrogen in an annual grassland and a young mixed-conifer forest. Soil Biol Biochem 25:431–442. doi:10.1016/0038-0717(93)90068-M

    Article  Google Scholar 

  • Hauck RD, Bremner JM (1976) Use of tracers for soil and fertilizer nitrogen research. Adv Agron 28:219–260. doi:10.1016/S0065-2113(08)60556-8

    Article  Google Scholar 

  • Hobbie SE, Chapin FSIII (1996) Winter regulation of tundra litter carbon and nitrogen dynamics. Biogeochemistry 35:327–338. doi:10.1007/BF02179958

    Article  Google Scholar 

  • Houlton BZ, Driscoll CT, Fahey TJ, Likens GE, Groffman PM, Bernhardt ES, Buso DC (2003) Nitrogen dynamics in ice storm-damaged forest ecosystems: implications for nitrogen limitation theory. Ecosystems (NY, Print) 6:431–443. doi:10.1007/s10021-002-0198-1

    Article  Google Scholar 

  • Huntington GL, Akeson MA (1987) Soil resource inventory of Sequoia National Park, Central Part, California. US Department of Interior, National Park Service, CA8005-2-0002

  • Ivarson KC, Sowden FJ (1970) Effect of frost action and storage of soil at freezing temperatures on the free amino acids, free sugars, and respiratory activity of soil. Can J Soil Sci 50:191–198

    Google Scholar 

  • Jaeger CH, Monson RK, Fisk MC, Schmidt SK (1999) Seasonal partitioning of nitrogen by plants and soil microorganisms in an alpine ecosystem. Ecology 80:1883–1891. doi:10.1890/0012-9658(1999)080[1883:SPONBP]2.0.CO;2

    Article  Google Scholar 

  • Jones JB Jr, Petrone KC, Finlay JC, Hinzman LD, Bolton WR (2005) Nitrogen loss from watersheds of interior Alaska underlain with discontinuous permafrost. Geophys Res Lett 32:L02401. doi:10.1029/2004GL021734

    Article  Google Scholar 

  • Kielland K, Olson K, Ruess RW, Boone RD (2006) Contribution of winter processes to soil nitrogen flux in taiga forest ecosystems. Biogeochemistry 81:349–360. doi:10.1007/s10533-006-9045-3

    Article  Google Scholar 

  • Kirkham D, Bartholomew WV (1954) Equations for following nutrient transformations in soils, utilizing tracer data. Soil Sci Soc Proc 18:33–34

    Google Scholar 

  • Knowles R, Blackburn TH (1993) Nitrogen isotope techniques. Academic Press, Inc., New York, pp 263–268

    Google Scholar 

  • Knowles N, Dettinger MD, Cayan DR (2006) Trends in snowfall versus rainfall in the western United States. J Clim 19:4545–4559. doi:10.1175/JCLI3850.1

    Article  Google Scholar 

  • Likens GE (2004) Some perspectives on long-term biogeochemical research from the Hubbard Brook ecosystem study. Ecology 85:2355–2362. doi:10.1890/03-0243

    Article  Google Scholar 

  • Lipson DA, Schmidt SK, Monson RK (1999) Links between microbial population dynamics and nitrogen availability in an alpine ecosystem. Ecology 80:1623–1631

    Article  Google Scholar 

  • Lipson DA, Schmidt SK, Monson RK (2000) Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass. Soil Biol Biochem 32:441–448. doi:10.1016/S0038-0717(99)00068-1

    Article  Google Scholar 

  • Lipson DA, Schadt CW, Schmidt SK (2002) Changes in microbial structure and function in an alpine dry meadow following spring snow melt. Microb Ecol 43:307–314. doi:10.1007/s00248-001-1057-x

    Article  Google Scholar 

  • Maurer EP, Stewart IT, Bonfils C, Duffy PB, Cayan D (2007) Detection, attribution, and sensitivity of trends toward earlier streamflow in the Sierra Nevada. J Geophys Res 112:D11119. doi:10.1029/2006JD008088

    Article  Google Scholar 

  • Miller AE, Schimel JP, Sickman JO, Meixner T, Doyle AP, Melack JM (2007) Mineralization responses at near-zero temperatures in three alpine soils. Biogeochemistry 84:233–245. doi:10.1007/s10533-007-9112-4

    Article  Google Scholar 

  • Mitchell MJ, Driscoll CT, Kahl JS, Likens GE, Murdoch PS, Pardo LH (1996) Climatic control of nitrate loss from forested watersheds in the northeast United States. Environ Sci Technol 30:2609–2612. doi:10.1021/es9600237

    Article  Google Scholar 

  • Monson RK, Lipson DA, Burns SP, Turnipseed AA, Delany AC, Williams MW, Schmidt SK (2006) Winter forest soil respiration controlled by climate and microbial community composition. Nature 439:711–714. doi:10.1038/nature04555

    Article  Google Scholar 

  • Mooney HA, Billings WD (1960) The annual carbohydrate cycle of alpine plants as related to growth. Am J Bot 47:594–598. doi:10.2307/2439439

    Article  Google Scholar 

  • Myrold DD (1998) Transformations of nitrogen. In: Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer D (eds) Principles and applications of soil microbiology. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Neilsen CB, Groffman PM, Hamburg SP, Driscoll CT, Fahey TJ, Hardy JP (2001) Freezing effects on carbon and nitrogen cycling in northern hardwood forest soils. Soil Sci Soc Am J 65:1723–1730

    Google Scholar 

  • Perakis SS, Compton JE, Hedin LO (2005) Nitrogen retention across a gradient of 15N additions to an unpolluted temperate forest soil in Chile. Ecology 86:96–105. doi:10.1890/04-0415

    Article  Google Scholar 

  • Piao S, Ciais P, Friedlingstein P, Payelin P, Reichstein M, Luyssaert S, Margolis H, Fang J, Barr A, Chen A, Grelle A, Hollinger DY, Laurila T, Lindroth A, Richardson AD, Vesala T (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451:49–53. doi:10.1038/nature06444

    Article  Google Scholar 

  • PRISM Group (2006) Online PRISM climate database. http://www.prismclimate.org. Cited 1 July 2008

  • Rehder H, Schäfer A (1978) Nutrient studies in alpine ecosystems. IV. Communities of the central Alps and comparative surveys. Oecologia 34:309–327. doi:10.1007/BF00344909

    Article  Google Scholar 

  • Ruess RW, Hendrick RL, Burton AJ, Pregitzer KS, Sveinbjornssön AMF, Maurer GE (2003) Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecol Monogr 73:643–662. doi:10.1890/02-4032

    Article  Google Scholar 

  • Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:1359–1361. doi:10.1126/science.1086940

    Article  Google Scholar 

  • Schimel JP, Chapin FSIII (1996) Tundra plant uptake of amino acid and NH4 + in situ: plants compete well for amino acid N. Ecology 77:2142–2147. doi:10.2307/2265708

    Article  Google Scholar 

  • Schimel JP, Mikan C (2005) Changing microbial substrate use in Arctic tundra soils through a freeze-thaw cycle. Soil Biol Biochem 37:1411–1418. doi:10.1016/j.soilbio.2004.12.011

    Article  Google Scholar 

  • Schimel JP, Bilbrough C, Welker JM (2004) Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biol Biochem 36:217–227. doi:10.1016/j.soilbio.2003.09.008

    Article  Google Scholar 

  • Schmidt IK, Jonasson S, Michelsen A (1999) Mineralization and microbial immobilization of N and P in arctic soils in relation to season, temperature and nutrient amendment. Appl Soil Ecol 11:147–160. doi:10.1016/S0929-1393(98)00147-4

    Article  Google Scholar 

  • Schmidt SK, Costello EK, Nemergut DR, Cleveland CC, Reed SC, Weintraub MN, Meyer AF, Martin AA (2007) Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecology 88:1379–1385. doi:10.1890/06-0164

    Article  Google Scholar 

  • Sickman JO, Leydecker A, Melack JM (2001) Nitrogen mass balances and abiotic controls on N retention and yield in high-elevation catchments of the Sierra Nevada, California. Water Resour Res 37:1445–1461. doi:10.1029/2000WR900371

    Article  Google Scholar 

  • Sickman JO, Leydecker A, Chang CCY, Kendall C, Melack JM, Lucero DM, Schimel J (2003) Mechanisms underlying export of N from high-elevation catchments during seasonal transitions. Biogeochemistry 64:1–24. doi:10.1023/A:1024928317057

    Article  Google Scholar 

  • Sommerfeld RA, Mosier AR, Musselman RC (1993) CO2, CH4 and N2O flux through a Wyoming snowpack and implications for global budgets. Nature 361:140–142. doi:10.1038/361140a0

    Article  Google Scholar 

  • Sommerfeld RA, Massman WJ, Musselman RC (1996) Diffusional flux of CO2 through snow: spatial and temporal variability among alpine–subalpine sites. Global Biogeochem Cycles 10:473–482. doi:10.1029/96GB01610

    Article  Google Scholar 

  • Stark JM (2000) Nutrient transformations. In: Sala OE, Jackson RB, Mooney HA, Howarth RW (eds) Methods in ecosystem science. Springer, New York

    Google Scholar 

  • Stark JM, Hart SC (1996) Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulfate digests for nitrogen-15 analysis. Soil Sci Soc Am J 60:1846–1855

    Google Scholar 

  • Stewart IT, Cayan DR, Dettinger MD (2005) Changes toward earlier streamflow timing across western North America. J Clim 18:1136–1155. doi:10.1175/JCLI3321.1

    Article  Google Scholar 

  • Tye AM, Young SD, Crout NMJ, West HM, Stapleton LM, Poulton PR, Laybourn-Parry J (2005) The fate of 15N added to high Arctic tundra to mimic increased inputs of atmospheric nitrogen released from a melting snowpack. Glob Change Biol 11:1640–1654. doi:10.1111/j.1365-2486.2005.01044.x

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial C. Soil Biol Biochem 19:703–707. doi:10.1016/0038-0717(87)90052-6

    Article  Google Scholar 

  • Williams MW, Bales RC, Brown AD, Melack JM (1995) Fluxes and transformations of nitrogen in a high-elevation catchment, Sierra Nevada. Biogeochemistry 28:1–31. doi:10.1007/BF02178059

    Article  Google Scholar 

Download references

Acknowledgments

We thank Al Leydecker, Evan Schmidt, and Pete Kirchner for invaluable help in the field, and Allen Doyle and Aimee Davignon for their many hours in the lab. Annie Esperanza, Sequoia-Kings Canyon National Park, provided logistical and administrative support, and Sylvia Haultain graciously provided taxonomic data. We also thank two anonymous reviewers for their helpful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy E. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, A.E., Schimel, J.P., Sickman, J.O. et al. Seasonal variation in nitrogen uptake and turnover in two high-elevation soils: mineralization responses are site-dependent. Biogeochemistry 93, 253–270 (2009). https://doi.org/10.1007/s10533-009-9301-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-009-9301-4

Keywords

Navigation