Skip to main content

Advertisement

Log in

Dynamics of Redox Changes of Iron Caused by Light–dark Variations in Littoral Sediment of a Freshwater Lake

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Depth profiles of oxygen concentration and the redox status of acid-extractable iron were measured in littoral sediment cores of Lake Constance incubated under a light–dark regimen of 12 h. While oxygen penetrated to 3.4±0.2 mm depth in the dark, photosynthetic oxygen production shifted the oxic–anoxic interface down to 4.0±0.2 mm or 5.9±1.6 mm depth, at low or high light intensity, respectively, and caused a net oxygen efflux into the water column. After a light–dark or dark–light transition, the oxygen concentration at the sediment surface reached a new steady state within about 20 min. The redox state of the bioavailable iron was determined in 1-mm slices of sediment subcores. After a dark period of 12 h, 85% of the acid-extractable iron (10.5 μmol cm−3 total) in the uppermost 8 mm was in the reduced state. Within 12 h at low or high light intensity, the proportion of ferrous iron decreased to 82 or 75%, respectively, corresponding to net rates of iron oxidation in the range of 244 and 732 nmol  cm−3 h−1, respectively. About 55 or 82% of the iron oxidation at low or high light intensity occurred in the respective oxic zone of the sediment; the remaining part was oxidized in the anoxic zone, probably coupled to nitrate reduction. The areal rates of iron oxidation in the respective oxic layer (21 or 123 nmol  cm−2 h−1 at low or high light intensity, respectively) would account for 4 and 23% of the total electron flow to oxygen, respectively. Light changes caused a rapid migration of the oxic–anoxic interface in the sediment, followed by a slow redox reaction of biologically available iron, thus providing temporal niches for aerobic iron oxidizers and anaerobic iron reducers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Benz A. Brune B. Schink (1998a) ArticleTitleAnaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria Arch. Microbiol. 169 159–165 Occurrence Handle10.1007/s002030050555

    Article  Google Scholar 

  • M. Benz B. Schink A. Brune (1998b) ArticleTitleHumic acid reduction by Propionibacterium freudenreichiiother fermenting bacteria Appl. Environ. Microbiol. 64 4507–4512

    Google Scholar 

  • A. Brune D. Emerson J. Breznak (1995) ArticleTitleThe termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites Appl. Environ. Microbiol. 61 2681–2687

    Google Scholar 

  • D.E. Canfield B. Thamdrup J.W. Hansen (1993) ArticleTitleThe anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction and sulfate reduction Geochim. Cosmochim. Acta 57 3867–3883 Occurrence Handle10.1016/0016-7037(93)90340-3 Occurrence Handle11537734

    Article  PubMed  Google Scholar 

  • R. Carlton R.G. Wetzel (1986) ArticleTitleDistributions and fates of oxygen in periphyton communities Can. J. Bot. 65 1031–1037

    Google Scholar 

  • T.T. Chao L. Zhou (1983) ArticleTitleExtraction techniques for selective dissolution of amorphous iron oxides from soils and sediments Soil Sci. Soc. Am. J. 47 225–232

    Google Scholar 

  • R.M. Cornell U. Schwertmann (1996) The Iron Oxides – StructureProperties, Reactions, Occurrence and Uses EditionNumber1 VCH, Weinheim Germany

    Google Scholar 

  • A. Ehrenreich F. Widdel (1994) ArticleTitleAnaerobic oxidation of ferrous iron by purple bacteriaa new type of phototrophic metabolism Appl. Environ. Microbiol. 60 4517–4526 Occurrence Handle7811087

    PubMed  Google Scholar 

  • D. Emerson C. Moyer (1997) ArticleTitleIsolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH Appl. Environ. Microbiol. 63 4784–4792

    Google Scholar 

  • E. Epping M. Kühl (2000) ArticleTitleThe responses of photosynthesis and oxygen consumption to short-term changes in temperature and irradiance in a cyanobacterial mat (Ebro DeltaSpain) Environ. Microbiol. 2 465–474 Occurrence Handle10.1046/j.1462-2920.2000.00129.x Occurrence Handle11234934

    Article  PubMed  Google Scholar 

  • C. Fründ Y. Cohen (1992) ArticleTitleDiurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats Appl. Environ. Microbiol. 58 70–77

    Google Scholar 

  • F. Garcia-Pichel M. Mechling R.W. Castenholz (1994) ArticleTitleDiel migrations of microorganisms within a benthic, hypersaline mat community Appl. Environ. Microbiol. 60 1500–1511

    Google Scholar 

  • W.C. Ghiorse (1984) ArticleTitleBiology of iron- and manganese-depositing bacteria Annu. Rev. Microbiol. 38 515–550 Occurrence Handle6388499

    PubMed  Google Scholar 

  • R.N. Glud J.K. Gundersen H. Røy B.B. Jørgensen (2003) ArticleTitleSeasonal dynamics of benthic O2 uptake in a semienclosed bay: importance of diffusion and faunal activity Limnol. Oceanogr. 48 1265–1276

    Google Scholar 

  • S.D. Hauck M. Benz A. Brune B. Schink (2001) ArticleTitleFerrous iron oxidation by denitrifying bacteria in profundal sediments of a deep lake (Lake Constance) FEMS Microbiol. Ecol. 37 127–134 Occurrence Handle10.1016/S0168-6496(01)00153-2

    Article  Google Scholar 

  • S. Heising B. Schink (1998) ArticleTitlePhototrophic oxidation of ferrous iron by a Rhodomicrobium vannielii strain Microbiology 144 2263–2269 Occurrence Handle9720049

    PubMed  Google Scholar 

  • G.E. Hutchinson (1961) ArticleTitleThe paradox of the plankton Am. Nat. 95 137–146 Occurrence Handle10.1086/282171

    Article  Google Scholar 

  • B.B. Jorgensen (1994) ArticleTitleSulfate reduction and thiosulfate transformations in a cyanobacterial mat during a diel oxygen cycle FEMS Microbiol. Ecol. 13 303–312 Occurrence Handle10.1016/0168-6496(94)90068-X

    Article  Google Scholar 

  • J.E. Kostka G.W. Luther SuffixIII (1995) ArticleTitleSeasonal cycling of Fe in saltmarsh sediments Biogeochemistry 29 159–181 Occurrence Handle10.1007/BF00000230

    Article  Google Scholar 

  • S. Kucera R. Wolfe (1957) ArticleTitleA selective enrichment method for Gallionella ferruginea J. Bacteriol. 74 344–349 Occurrence Handle13475247

    PubMed  Google Scholar 

  • M. Kühl B.B. Jørgensen (1994) ArticleTitleThe light field of microbenthic communities: radiance distribution and microscale optics of sandy coastal sediments Limnol. Oceanogr. 39 1368–1398

    Google Scholar 

  • D.R. Lovley (1997) ArticleTitleMicrobial Fe(III) reduction in subsurface environments FEMS Microbiol. Rev. 20 305–313 Occurrence Handle10.1016/S0168-6445(97)00013-2

    Article  Google Scholar 

  • D.R. Lovley J.D. Coates E.L. Blunt-Harris E.J.P. Phillips J. Woodward (1996) ArticleTitleHumic substances as electron acceptors for microbial respiration Nature 382 445–448 Occurrence Handle10.1038/382445a0

    Article  Google Scholar 

  • D.R. Lovley E.J.P. Phillips (1986) ArticleTitleOrganic matter mineralization with reduction of ferric iron in anaerobic sediments Appl. Environ. Microbiol. 51 683–689

    Google Scholar 

  • G.W. Luther SuffixIII J.E. Kostka T.M. Church B. Sulzberger W. Stumm (1992) ArticleTitleSeasonal iron cycling in the salt-marsh sedimentary environment: the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyriterespectively Mar. Chem. 40 81–103 Occurrence Handle10.1016/0304-4203(92)90049-G

    Article  Google Scholar 

  • W.L. Miller D. Kester (1994) ArticleTitlePhotochemical iron reduction and iron bioavailability in seawater J. Mar. Res. 52 325–343 Occurrence Handle10.1357/0022240943077136

    Article  Google Scholar 

  • L. Moeslund B. Thamdrup B.B. Jørgensen (1994) ArticleTitleSulfur and iron cycling in a coastal sediment: radiotracer studies and seasonal dynamics Biogeochemistry 27 129–152

    Google Scholar 

  • J. Moraghan R. Buresh (1976) ArticleTitleChemical reduction of nitrite and nitrous oxide by ferrous iron Soil Sci. Soc. Am. J. 41 47–50

    Google Scholar 

  • K. Nealson D. Saffarini (1994) ArticleTitleIron and manganese in anaerobic respiration Annu. Rev. Microbiol. 48 311–343 Occurrence Handle10.1146/annurev.mi.48.100194.001523 Occurrence Handle7826009

    Article  PubMed  Google Scholar 

  • K.P. Nevin D.R. Lovley (2000) ArticleTitlePotential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments Environ. Sci. Technol. 34 2472–2478 Occurrence Handle10.1021/es991181b

    Article  Google Scholar 

  • Peiffer S. 1994. Reaction of H2S with ferric oxides. In: Baker L.A. (ed.), Environmental Chemistry of Lakes and Reservoirs. American Chemical Society, pp. 371–390.

  • N. Pfennig H.G. Trüper et al. (1992) The family Chromatiaceae A. Balows (Eds) The Prokaryotes – A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications Springer-Verlag Berlin, Heidelberg and New York 3200–3221

    Google Scholar 

  • B.K. Pierson R.W. Castenholz et al. (1992) The family Chloroflexaceae A. Balows (Eds) The Prokaryotes – A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications Springer-Verlag Berlin, Heidelberg and New York 3754–3774

    Google Scholar 

  • B.K. Pierson M.N. Parenteau B.M. Griffin (1999) ArticleTitlePhototrophs in high iron concentration microbial mats: physiological ecology of phototrophs in an iron-depositing hot spring Appl. Environ. Microbiol. 65 5474–5483 Occurrence Handle10584006

    PubMed  Google Scholar 

  • N.P. Revsbech (1989) ArticleTitleAn oxygen microsensor with a guard cathode Limnol. Oceanogr. 34 474–478

    Google Scholar 

  • N.P. Revsbech B.B. Jørgensen T.H. Blackburn Y. Cohen (1983) ArticleTitleMicroelectrode studies of the photosynthesis and O2H2S, and pH profiles of a microbial mat Limnol. Oceanogr. 28 1062–1074

    Google Scholar 

  • N.P. Revsbech B.B. Jørgensen O. Brix (1981) ArticleTitlePrimary production of microalgae in sediments measured by oxygen microprofileH14 CO3 fixation, and oxygen exchange methods Limnol. Oceanogr. 26 717–730

    Google Scholar 

  • E.E. Roden R.G. Wetzel (1996) ArticleTitleOrganic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated wetland sediments Limnol. Oceanogr. 41 1733–1748

    Google Scholar 

  • E.E. Roden R.G. Wetzel (2002) ArticleTitleKinetics of microbial Fe(III)oxide reduction in freshwater wetland sediments Limnol. Oceanogr. 47 198–211

    Google Scholar 

  • T.F. Rozan J. Herszage L. Valdes K. Price G.W. Luther SuffixIII (2002) ArticleTitleIron–sulfur–phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms Limnol. Oceanogr. 47 1346–1354

    Google Scholar 

  • D. Sobolev E.E. Roden (2002) ArticleTitleEvidence for rapid microscale bacterial redox cycling of iron in circumneutral environments Anton. Leeuw. Int. J. G. 81 587–597

    Google Scholar 

  • L.L. Stookey (1970) ArticleTitleFerrozine - a new spectrophotometric reagent for iron Anal. Chem. 42 779–781 Occurrence Handle10.1021/ac60289a016

    Article  Google Scholar 

  • K.L. Straub M. Benz B. Schink F. Widdel (1996) ArticleTitleAnaerobic, nitrate-dependent microbial oxidation of ferrous iron Appl. Environ. Microbiol. 62 1458–1460

    Google Scholar 

  • K.L. Straub B. Buchholz-Cleven (1998) ArticleTitleEnumeration and detection of anaerobic ferrous iron-oxidizing, nitrate-reducing bacteria from diverse European sediments Appl. Environ. Microbiol. 64 4846–4856 Occurrence Handle9835573

    PubMed  Google Scholar 

  • K.L. Straub F.A. Rainey F. Widdel (1999) ArticleTitleIsolation and characterization of marine phototrophic ferrous iron-oxidizing purple bacteriaRhodovulum iodosum sp. nov. and Rhodovulum robiginosum sp. nov Int. J. Syst. Bacteriol. 49 729–735 Occurrence Handle10319496

    PubMed  Google Scholar 

  • K.L. Straub B. Schink (2003) ArticleTitleEvaluation of electron-shuttling compounds in microbial ferric iron reduction FEMS Microbiol. Lett. 220 229–233 Occurrence Handle10.1016/S0378-1097(03)00130-7 Occurrence Handle12670685

    Article  PubMed  Google Scholar 

  • W. Stumm J.J. Morgan (1981) Aquatic Chemistry Wiley New York

    Google Scholar 

  • M. Szilágyi (1971) ArticleTitleReduction of Fe3+ ion by humic acid preparations Soil Sci. 111 233–235

    Google Scholar 

  • U. Tessenow T. Frevert W. Hofgärtner A. Moser (1977) ArticleTitleEin simultan schließender Serienwasserschöpfer für Sedimentkontaktwasser mit fotoelektrischer Selbstauslösung und fakultativem Sedimentstecher Archiv für Hydrobiologie / Supplementband 48 438–452

    Google Scholar 

  • B. Thamdrup (2000) Bacterial manganese and iron reduction in aquatic sediments B. Schink (Eds) Advances in Microbial Ecology NumberInSeriesVol. 16 Kluwer Academic/Plenum Publishers New York 41–84

    Google Scholar 

  • B. Thamdrup H. Fossing B.B. Jørgensen (1994) ArticleTitleManganeseiron, and sulfur cycling in a coastal marine sedimentAarhus Bay, Denmark Geochim. Cosmochim. Acta 58 5115–5129 Occurrence Handle10.1016/0016-7037(94)90298-4

    Article  Google Scholar 

  • H.G. Trüper N. Pfennig et al. (1992) The family Chlorobiaceae A. Balows (Eds) The Prokaryotes – A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications Springer-Verlag Berlin, Heidelberg and New York 3583–3592

    Google Scholar 

  • R.G. Wetzel (2001) Limnology – Lake and River Ecosystems EditionNumber3 Academic Press London

    Google Scholar 

  • F. Widdel S. Schnell S. Heising A. Ehrenreich B. Assmus B. Schink (1993) ArticleTitleFerrous iron oxidation by anoxygenic phototrophic bacteria Nature 362 834–836 Occurrence Handle10.1038/362834a0

    Article  Google Scholar 

  • A.J.B. Zehnder W. Stumm (1988) Geochemistry and biogeochemistry of anaerobic habitats A.J.B. Zehnder (Eds) Biology of Anaerobic Microorganisms Wiley New York 1–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Schink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerhardt, S., Brune, A. & Schink, B. Dynamics of Redox Changes of Iron Caused by Light–dark Variations in Littoral Sediment of a Freshwater Lake. Biogeochemistry 74, 323–339 (2005). https://doi.org/10.1007/s10533-004-4724-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-004-4724-4

Keywords

Navigation