Skip to main content

Advertisement

Log in

Worldwide ant invasions under climate change

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Many ants are among the most globally significant invasive species. They have caused the local decline and extinction of a variety of taxa ranging from plants to mammals. They disturb ecosystem processes, decrease agricultural production, damage infrastructure and can be a health hazard for humans. Overall, economic costs caused by invasive ants amount to several billion US $ annually. There is general consensus that the future distributions of invasive species are likely to expand with climate change, however this dogma remains poorly tested. Here we model suitable area globally for 15 of the worst invasive ant species, both currently and with predicted climate change (in 2080), globally, regionally and within the world’s 34 biodiversity hotspots. Surprisingly, the potential distribution of only five species was predicted to increase (up to 35.8 %) with climate change, with most declining by up to 63.3 %. The ant invasion hotspots are predominantly in tropical and subtropical regions of South America, Africa, Asia and Oceanic islands, and particularly correspond with biodiversity hotspots. Contrary to general expectations, climate change and invasive ant species will not systematically act synergistically. However, ant invasions will likely remain as a major global problem, especially where invasion hotspots coincide with biodiversity hotspots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  • Araujo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modelling. Ecology 93:1527–1539

    Article  PubMed  Google Scholar 

  • Beaumont LJ, Gallagher RV, Thuiller W et al (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers Distrib 15:409–420

    Article  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P et al (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  Google Scholar 

  • Bertelsmeier C, Luque GM, Courchamp F (2013a) Increase in quantity and quality of suitable areas for invasive species as climate changes. Conserv Biol 27:1458–1467

    Article  PubMed  Google Scholar 

  • Bertelsmeier C, Luque GM, Courchamp F (2013b) Global warming may freeze the invasion of big-headed ants. Biol Invasions 15:1561–1572

    Article  Google Scholar 

  • Bolton B (2007) Taxonomy of the dolichoderine ant genus Technomyrmex Mayr (Hymenoptera: Formicidae) based on the worker caste. Contrib Am Entomol Inst 35:1–150

    Google Scholar 

  • Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23:453–460

    Article  PubMed  Google Scholar 

  • Buisson L, Thuiller W, Casajus N et al (2010) Uncertainty in ensemble forecasting of species distribution. Glob Chang Biol 16:1145–1157

    Article  Google Scholar 

  • Butchart S, Walpole M, Collen B et al (2010) Global biodiversity: indicators of recent declines. Science 328(5982):1164–1168

    Article  CAS  PubMed  Google Scholar 

  • Clavero M, García-Berthou E (2005) Invasive species are a leading cause of animal extinctions. Trends Ecol Evol 20:110

    Article  PubMed  Google Scholar 

  • Cristianini N, Schölkopf B (2002) Support vector machines and kernel methods, the new generation of learning machines. AI Mag 23:31–41

    Google Scholar 

  • De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192

    Article  Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139

    Article  PubMed  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Espadaler X, Bernal V (2009) Lasius neglectus–a polygynous, sometimes invasive, ant. http://www.creaf.uab.es/xeg/lasius/Ingles/distribution.htm. Accessed 1 May 2011

  • Essl F, Dullinger S, Rabitsch W et al (2011) Socioeconomic legacy yields an invasion debt. Proc Natl Acad Sci U S A 108:203–207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Franklin J (2009) Mapping Species Distributions–Spatial Inference and Prediction. Cambridge University Press, Cambridge

    Google Scholar 

  • Franklin J, Davis FW, Ikegami M et al (2012) Modeling plant species distributions under future climates: how fine-scale do climate projections need to be? Glob Chang Biol 19:473–483

    Article  PubMed  Google Scholar 

  • Gallagher RV, Beaumont LJ, Hughes L, Leishman MR (2010) Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. J Ecol 98:790–799

    Article  Google Scholar 

  • GIEC (2007) Climate Change 2007: Synthesis Report. An Assessment of the Intergovernmental Panel on Climate Change

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Guo QH, Liu Y (2010) ModEco: an integrated software package for ecological niche modeling. Ecography (Cop) 33:637–642

    Article  Google Scholar 

  • Gutrich JJ, VanGelder E, Loope L (2007) Potential economic impact of introduction and spread of the red imported fire ant, Solenopsis invicta, in Hawaii. Environ Sci Policy 10:685–696

    Article  Google Scholar 

  • Harris RJ, Rees J (2004) Ant Distribution Database. In: www.landcareresearch.co.nz/research/biocons/invertebrates/ants/distribution. Accessed 01 April 2011

  • Hayes KR, Barry SC (2008) Are there any consistent predictors of invasion success? Biol Invasions 10:483–506

    Article  Google Scholar 

  • Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22:534–543

    Article  PubMed  Google Scholar 

  • Hijmans RJ, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1 DIVA-GIS. Genet Resour Newsl 127:15–19

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hoffmann BD, Abbott KL, Davis PD (2010) Invasive Ant Management. In: Lach L, Parr CL, Abbott KL (eds) Ant Ecology. Oxford University Press, Oxford, pp 287–304

    Google Scholar 

  • Holway D, Lach L, Suarez AV et al (2002) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33:181–233

    Article  Google Scholar 

  • IUCN SSC Invasive Species Specialist Group (2012) Global Invasive Species Database. available from http//www.issg.org/database accessed 24 January 2012

  • King JR, Tschinkel WR (2008) Experimental evidence that human impacts drive fire ant invasions and ecological change. Proc Natl Acad Sci U S A 105:20339–20343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lach L, Hooper-Bui LM (2010) Consequences of Ant Invasions. In: Lach L, Parr CL, Abbott KL (eds) Ant Ecology. Oxford University Press, Oxford, pp 261–286

    Google Scholar 

  • Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species–a selection from the global invasive species database. 12

  • Mikheyev AS, Mueller UG (2006) Invasive species: customs intercepts reveal what makes a good ant storaway. Curr Biol 16:R129–R131

    Article  CAS  PubMed  Google Scholar 

  • Mittermeier RA, Turner WR, Larsen FW, et al. (2012) Biodiversity Hotspots Distribution and Protection of Conservation Priority Areas. 3–22

  • Moreira DDO, De Morais V, Vieira-Da-Motta O et al (2005) Ants as carriers of antibiotic-resistant bacteria in hospitals. Neotrop Entomol 34:999–1006

    Article  Google Scholar 

  • Morrison LW, Korzukhin MD, Porter SD (2005) Predicted range expansion of the invasive fire ant, Solenopsis invicta, in the eastern United States based on the VEMAP global warming scenario. Divers Distrib 11:199–204

    Article  Google Scholar 

  • Nenzén HK, Araújo MB (2011) Choice of threshold alters projections of species range shifts under climate change. Ecol Model 222:3346–3354

    Article  Google Scholar 

  • Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:225–245

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Root BA, Price JT, Hall K (2003) Fingerprints of global warming on wild animals and plants. Nature 421:47–60

    Article  Google Scholar 

  • Roura-Pascual N, Suarez AV, Gomez C et al (2004) Geographical potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change. Proc R Soc Lond Ser B Biol Sci 271:2527–2534

    Article  Google Scholar 

  • Roura-Pascual N, Hui C, Ikeda T, et al. (2011) Relative roles of climatic suitability and anthropgenic influence in determining the pattern of spread in a global invader. Proc Natl Acad Sci USA 108:220–225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simberloff D, Martin J-L, Genovesi P et al (2013) Impacts of biological invasions - what’s what and the way forward. Trends Ecol Evol 28:58–66

    Article  PubMed  Google Scholar 

  • Suarez AV, Holway DA, Ward PS (2005) The role of opportunity in the unintentional introduction of nonnative ants. Proc Natl Acad Sci U S A 102:17032–17035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suarez AV, McGlynn TP, Tsuitsui ND (2010) Biogeographic and Taxonomic Patterns of Introduced Ants. In: Lach L, Parr CL, Abbott KL (eds) Ant Ecology. Oxford University Press, New York, pp 233–244

    Google Scholar 

  • Ward DF (2007) Modelling the potential geographic distribution of invasive ant species in New Zealand. Biol Invasions 9:723–735

    Article  Google Scholar 

  • Wetterer JK (2009) Worldwide spread of the destroyer ant, Monomorium destructor (Hymenoptera: formicidae). Myrmecol News 12:97–108

    Google Scholar 

Download references

Acknowledgments

This paper was supported by the Région Ile-de-France (03-2010/GV-DIM ASTREA) and the ANR (2009 PEXT 010 01) grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleo Bertelsmeier.

Additional information

Communicated by Jens Wolfgang Dauber.

Appendix

Electronic supplementary material

Below is the link to the electronic supplementary material.

10531_2014_794_MOESM1_ESM.docx

Table A1 Non-collinear variables (see materials and methods), used to model each species’ potential distribution (6 variables per species) (DOCX 227 kb)

10531_2014_794_MOESM2_ESM.pdf

Fig. A1 Variation in model performances as determined by the area under the curve (AUC) of the Receiver Operating Characteristic curve, mean ± SD) across the 5 algorithms for the 15 ant species. Ag = A. gracilipes, Lh = L. humile, Ln = L. neglectus, Md = M. destructor, Mf = M. floricola, Mp = M. pharaonis, Mr = M. rubra, Pl = P. longicornis, Pm = P. megacephala, Sg = S. geminata, Si = S. invicta, Sr = S. richteri, Ta = T. albipes, Tm = T. melanocephalum, Wa = W. auropunctata (PDF 107 kb)

Fig. A2 Maps of current and future (2080) climatic suitability for the 15 invasive ant species (PDF 2178 kb)

10531_2014_794_MOESM4_ESM.pdf

Fig. A3 Variation in predicted changes of suitable area between 6 future climatic scenarios (including 2 SRES and 3 GCMs) for the 15 invasive ant species. Red lines indicate the values of the consensus models. Ag = A. gracilipes, Lh = L. humile, Ln = L. neglectus, Md = M. destructor, Mf = M. floricola, Mp = M. pharaonis, Mr = M. rubra, Pl = P. longicornis, Pm = P. megacephala, Sg = S. geminata, Si = S. invicta, Sr = S. richteri, Ta = T. albipes, Tm = T. melanocephalum, Wa = W. auropunctata (PDF 97 kb)

10531_2014_794_MOESM5_ESM.pdf

Fig. A4 Spatial shift of net suitable area of the 15 invasive ant species. Areas in blue = only suitable under current climatic conditions; areas in red = only suitable under future (2080) climatic conditions; areas in yellow = suitable under both current and future climatic conditions. σ = Spatial congruence. ϒ = Stable range. Ag = A. gracilipes, Lh = L. humile, Ln = L. neglectus, Md = M. destructor, Mf = M. floricola, Mp = M. pharaonis, Mr = M. rubra, Pl = P. longicornis, Pm = P. megacephala, Sg = S. geminata, Si = S. invicta, Sr = S. richteri, Ta = T. albipes, Tm = T. melanocephalum, Wa = W. auropunctata (PDF 476 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertelsmeier, C., Luque, G.M., Hoffmann, B.D. et al. Worldwide ant invasions under climate change. Biodivers Conserv 24, 117–128 (2015). https://doi.org/10.1007/s10531-014-0794-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-014-0794-3

Keywords

Navigation