Skip to main content
Log in

Changes in soil microbial community composition induced by cometabolism of toluene and trichloroethylene

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The effects of trichloroethylene (TCE) on microbial community composition were analyzed by reverse sample genome probing. Soil enrichments were incubated in dessicators containing an organic phase of either 1 or 10% (w/w) toluene in vacuum pump oil, delivering constant equilibrium aqueous concentrations of 16 and 143 mg/l, respectively. Increasing the equilibrium aqueous concentration of TCE from 0 to 10 mg/l led to shifts in community composition at 16, but not at 143 mg/l of toluene. In closed system co-degradation studies, TCE at an aqueous concentration of 1 mg/1 was effectively degraded by toluene-degrading soil enrichments once the aqueous toluene concentration dropped below 25 mg/l. Little TCE degradation was observed at higher toluene concentrations (50–250 mg/l). The results indicate that TCE changes microbial community composition under conditions where it is being actively metabolized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez-Cohen L & Mc Carty PL (1991) A cometabolic biotransformation model for halogenated aliphatic compounds exhibiting product toxicity. Environ. Sci. Technol. 25: 1381–1387

    Google Scholar 

  • Barth JAC, Slater G, Schuth C, Bill M, Downey A, Larkin M & Kalin RM (2002) Carbon isotope fractionation during aerobic biodegradation of trichloroethene by Burkholderia cepacia G4: a tool to map degradation mechanisms. Appl. Environ. Microbiol. 68: 1728–1734

    PubMed  Google Scholar 

  • Cox EE, Major DW, Acton DW, Phelps TJ & White DC (1994) Evaluating trichloroethylene biodegradation by measuring the in situ status and activities of microbial populations. In: Hinchee RE, Leeson A, Semprini L & Ong SK (Eds) Bioremediation of Chlorinated and Polycyclic Compounds (pp 37–49) Lewis, Ann Arbor

  • Dabrock B, Riedel J, Bertram J & Gottschalk G (1992) Isopropyl-benzene (cumene) -a new substrate for the isolation of trichloroethylene-degrading bacteria. Arch. Microbiol. 158: 9–13

    PubMed  Google Scholar 

  • DowneyDC, HincheeRE & MillerRN (1999) Cost Effective Remediation and Closure of Petroleum-contaminated Sites. Batelle Press, Ohio

    Google Scholar 

  • Duetz WA, Gong CD, Williams PA & van Andel JG (1994) Competition in chemostat culture between Pseudomonas strains that use different pathways for the degradation of toluene. Appl. Environ. Microbiol. 60: 2858–2863

    PubMed  Google Scholar 

  • El Farhan YH, Scow KM, de Jonge LW, Rolston DE & Moldrup P (1998) Coupling transport and biodegradation of toluene and trichloroethylene in unsaturated soils. Water Res. 34: 437–445

    Google Scholar 

  • Ely RL, Williamson KJ, Hyman MR & Arp DJ (1997) Co-metabolism of chlorinated solvents by nitrifying bacteria: kinetic, substrate interactions, toxicity effects, and bacterial response. Biotech. Bioeng. 54: 520–534

    Google Scholar 

  • Ewers J, Freier-Schroeder D & Knackmuss H (1990) Selection of trichloroethylene (TCE) degrading bacteria that resist inactivation by TCE. Arch. Microbiol. 1 54: 410–413

    Google Scholar 

  • Fan S & Scow KM (1993) Biodegradation of trichloroethylene and toluene by indigenous microbial populations in soil. Appl. Environ. Microbiol. 59: 1911–1918

    PubMed  Google Scholar 

  • Fang J, Barcelona MJ & Alvarez PJ (2000) Phospholipids of ve Pseudomonad archetypes for different toluene degradation pathways. Bioremediation J. 4: 181–185

    Google Scholar 

  • Folsom BR, Chapman PJ & Pritchard PH (1990) Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Appl. Environ. Microbiol. 56: 1279–1285

    PubMed  Google Scholar 

  • Fries MR, Forney LJ & Tiedje JM (1997a) Phenol-and toluene-degrading microbial populations from an aquifer in which successful trichloroethene co-metabolism occurred. Appl. Environ. Microbiol. 63: 1523–1530

    Google Scholar 

  • Fries MR, Hopkins GD, McCarty PL, Forney LJ & Tiedje JM (1997b) Microbial succession during a eld evaluation of phenol and toluene as the primary substrates for trichloro-ethene co-metabolism. Appl. Environ, Microbiol. 63: 1515–1522

    Google Scholar 

  • Fuller ME, Mu DY & Scow KM (1995) Biodegradation of trichloroethylene and toluene by indigenous microbial populations in vadose sediments. Microbial Ecology. 29: 311–325

    Google Scholar 

  • Fuller ME, Scow KM, Lau S & Ferris H (1997) Trichloroethylene (TCE) and toluene effects on the structure and function of the soil community. Soil Biol. Biochem. 29: 75–89

    Google Scholar 

  • Futamata H, Harayama S, Hiraishi K & Watanabe K (2003) Functional and structural analysis of trichloroethylene-de-grading bacterial communities under different phenol-feeding conditions: laboratory experiments. Appl. Microbiol. Bio-technol. 60: 594–600

    Google Scholar 

  • Greene EA, Kay JG, Jaber K, Stehmeier LG & Voordouw G (2000) Composition of soil microbial communities enriched on a mixture of aromatic hydrocarbons. Appl. Environ. Microbiol. 66: 5282–5289

    PubMed  Google Scholar 

  • Guo GL, Tseng DH & Huang SL (2001) Co-metabolic degradation of trichloroethylene by Pseudomonas putida in a brous bed bioreactor. Biotech. Lett. 23: 1653–1657

    Google Scholar 

  • Hanson JR, Macalady JL, Harris D & Scow KM (1999) Linking toluene degradation with speci c microbial popula-tions in soil. Appl. Environ. Microbiol. 65: 5403–5408

    PubMed  Google Scholar 

  • Harker AR & Kim Y (1990) Trichloroethylene degradation by two independent aromatic-degrading pathways in Alcaligenes eutrophus JMP134. Appl. Environ. Microbiol. 56: 1179–1181

    PubMed  Google Scholar 

  • Hecht V, Brebberman D, Bremer P & Deckwer WD (1995) Co-metabolic degradation of trichloroethylene in a bubble column bioscrubber. Biotech. Bioeng. 47: 461–469

    Google Scholar 

  • Hirl PJ (1998) Combined anaerobic/aerobic biostimulation for remediation of rail yards contaminated by diesel engine repair and maintenance. Transport Res. Rec. 16 26: 114 — 119

    Google Scholar 

  • Hubert C, Shen Y & Voordouw G (1999) Composition of toluene-degrading microbial communities from soil at different concentrations of toluene. Appl. Environ. Microbiol. 65: 3064–3070

    PubMed  Google Scholar 

  • Hyman MR, Russell SA, Ely RL, Williamson KJ & Arp DJ (1995) Inhibition, inactivation, and recovery of ammonia-oxidizing activity in co-metabolism of trichloroethylene by Nitrosomonas europaea. Appl. Environ. Microbiol. 61: 1480–1487

    Google Scholar 

  • Jackson CR, Harper JP, Willoughby D, Roden EE & Churchill PF (1997) A simple and Efficient method for the separation of humic substances and DNA from environmental samples. Appl. Environ. Microbiol. 63: 4993–4995

    Google Scholar 

  • Kelly CJ, Bienkowski PR & Sayler GS (2000) Kinetic analysis of a tod-lux bacterial reporter for toluene degradation and trichloroethylene cometabolism. Biotech Bioeng. 69: 256–265

    Google Scholar 

  • Kerry E (1990) Microorganisms colonizing plants and soils subject to different degrees of human activity, including petroleum contamination, in the Vestfold Hills and Mac-Robertson land. Antarctica. Polar Biol. 10: 423–430

    Google Scholar 

  • Leahy JG, Byrne AM & Olsen RH (1996) Comparison of factors influencing trichloroethylene, degradation by toluene-oxidizing bacteria. Appl. Environ. Microbiol. 62: 825–833

    PubMed  Google Scholar 

  • Lee MD, Odom JM & Buchanan RJ Jr.(1998) New perspec-tives on microbial dehalogenation of chlorinated solvents: insights from the field. Annu. Rev. Microbiol. 52: 423–452

    PubMed  Google Scholar 

  • Lee WS, Park CS, Kirn JE, Yoon BD & Oh HM (2002) Characterization of TCE-degrading bacteria and their application to wastewater treatment. J. Microbiol. Biotechnol. 12: 569–575

    Google Scholar 

  • Lu CJ, Lee CM & Chung MS (1998) The comparison of trichloroethylene removal rates by methane-and aromatic-utilizing microorganisms. Water Sci. Tech. 38: 19–24

    Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribo-nucleic acid from micro-organisms. J. Mol. Biol. 3: 208–218

    Google Scholar 

  • McCarty PL, Goltz MN, Hopkins GD, Dolan ME, Allan JP, Kawakami BT & Carrothers TJ (1998) Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection. Environ. Sci. Tech-nol. 32: 88–100

    Google Scholar 

  • Mu DY & Scow KM (1994) Effect of trichloroethylene (TCE) and toluene concentrations on TCE and toluene biodegradation and the population density of TCE and toluene degraders in soil. Appl. Environ. Microbiol. 60: 2661–2665

    PubMed  Google Scholar 

  • Munakata-Marr J, Matheson VG, Forney LJ, Tiedje JM & McCarty PL (1997) Long-term biodegradation of trichloro-ethylene and dissolved oxygen in aquifer microcosms. Env. Sci. Technol. 31: 786–791

    Google Scholar 

  • Oldenhuis R, Oedzes JY, van der Waarde JJ & Janssen DB (1991) Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloro-ethylene. Appl. Environ. Microbiol. 57: 7–14

    PubMed  Google Scholar 

  • Parales RE, Ditty JL & Harwood CS (2000) Toluene-degrading bacteria are chemotactic towards the environmental pollu-tants benzene, toluene, and trichloroethylene. Appl. Environ. Microbiol. 66: 4098–4104

    PubMed  Google Scholar 

  • Park J, Kukor JJ & Abriola LM (2002) Characterization of the adaptive response to trichloroethylene-mediated stresses in Ralstonia pickettii PKO1. Appl. Environ. Microbiol. 68: 5231–5240

    PubMed  Google Scholar 

  • Perry RH & Green DW (1997) Perry 's Chemical Engineer 's Handbook, 7th edn. McGraw Hill, New York, NY

    Google Scholar 

  • Pressman JG, Georgiou G & Speitel GE Jr (1999) Demonstra-tion of Efficient trichloroethylene biodegradation in a hollow-ber membrane bioreactor. Biotech. Bioeng. 62: 682–692

    Google Scholar 

  • Robinson KG, Pieters JG, Sanseverino J, Cox CD, Wright CL, Cheng CL & Sayler GS (1998) Microbial oxidation and bioluminescence response for toluene and trichloroethylene. Water Sci. Technol. 38: 1–8

    Google Scholar 

  • Ryoo D, Shim H, Arenghi FLG, Barbieri P & Wood TK (2001) Tetrachloroethylene, trichloroethylene and chlorinated phenols induce toluene-o-xylene monooxygenase activity in Pseudomonas stutzeri OX1. Appl. Microbiol. Biotechnol. 56: 545–549

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF & Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY

    Google Scholar 

  • Shen Y, Stehmeier LG & Voordouw G (1998) Identification of hydrocarbon-degrading bacteria in soil by reverse sample genome probing. Appl. Environ. Microbiol. 64: 637–645

    Google Scholar 

  • Shim H, Ryoo D, Barbieri P & Wood TK (2001) Aerobic degradation of mixtures of tetrachloroethylene, trichloroeth-ylene, dichloroethylenes, and vinyl chloride by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Appl. Microbiol. Biotechnol. 56: 265–269

    PubMed  Google Scholar 

  • Smith LH & Mc Carty PL (1997) Laboratory evaluation of a two-stage treatment system for TCE cometabolism by a methane-oxidizing mixed culture. Biotech. Bioeng. 55: 650–659

    Google Scholar 

  • Stehmeier LG, Francis MM, Jack TR & Voordouw G (1999) Biodegradation of dicyclopentadiene in the field. Biodegradation 10: 135–148

    PubMed  Google Scholar 

  • Sun AK & Wood TK (1997) Trichloroethylene mineralization in a xed-lm bioreactor using a pure culture expressing constitutively toluene ortho-monooxygenase. Biotech. Bioeng. 55: 674–685

    Google Scholar 

  • Sung Y, Ritalahti KM, Sanford RA, Urbance JW, Flynn SJ, Tiedje JM & Loffer FE (2003) Characterization of two tetrachloroethene-reducing acetate-oxidizing anaerobic bac-teria and their description as Desulfuromonas michiganensis sp. nov. Appl Environ. Microbiol. 69: 2964–2974

    PubMed  Google Scholar 

  • Telang AJ, Ebert S, Foght JM, Westlake DWS, Jenneman GE, Gevertz D & Voordouw G (1997) The effect of nitrate injection on the microbial community in an oil eld as monitored by reverse sample genome probing. Appl. Envi-ron. Microbiol. 63: 1785–1793

    Google Scholar 

  • Torsvik V, Goksoyr J & Daae FL (1990) High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56: 782–787

    PubMed  Google Scholar 

  • Voordouw G, Voordouw JK, Jack TR, Foght JM, Fedorak PM & Westlake DWS (1992) Identification of distinct communi-ties of sulfate-reducing bacteria in oil elds by reverse sample genome probing. Appl. Environ. Microbiol. 58: 3542–3552

    Google Scholar 

  • Wackett LP & Householder SR (1989) Toxicity of trichloro-ethylene to Pseudomonas putida Fl is mediated by toluene dioxygenase. Appl. Environ. Microbiol. 55: 2723–2725

    Google Scholar 

  • Wackett LP, Brusseau GA, Householder SR & Hanson RS (1989) Survey of microbial oxidases: trichloroethylene deg-radation by propane-oxidizing bacteria. Appl. Environ. Microbiol. 55: 2960–2964

    PubMed  Google Scholar 

  • Winter RB, Yen K & Ensley BD (1989) Efficient degradation of trichloroethylene by a recombinant Escherichia Coli. Bio/ Technology. 7: 282–285

    Google Scholar 

  • Yang L, Chang Y & Chou M (1999) Feasibility of bioreme-diation of trichloroethylene contaminated sites by nitrifying bacteria through co-metabolism with ammonia. J. Hazard. Mater. 69: 111–126

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hubert, C., Shen, Y. & Voordouw, G. Changes in soil microbial community composition induced by cometabolism of toluene and trichloroethylene. Biodegradation 16, 11–22 (2005). https://doi.org/10.1007/s10531-003-0471-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-003-0471-4

Navigation