Skip to main content

Advertisement

Log in

Successful worldwide invasion of the veined rapa whelk, Rapana venosa, despite a dramatic genetic bottleneck

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Biological invasions represent an important component of global change, with potentially huge detrimental effects on native biological biodiversity and ecosystems. Knowledge about invasion history provides information about the invasion process and the origin and genetic composition of invading populations. To clarify the source and invasive routes of a successful world-wide invader, the veined rapa whelk, Rapana venosa, genetic variability of samples from five representative native populations from coasts of Japan and China and 13 worldwide invasive populations was analyzed using 11 nuclear microsatellite loci. A dramatic decrease of genetic variation was detected in the invasive populations compared with the native populations. The results demonstrated that R. venosa was capable of establishing itself in many areas despite a dramatic genetic bottleneck, suggesting that a remarkable reduction of genetic diversity is not a limiting factor for short-term success of this invasive species. Considering the lack of mitochondrial variation previously observed in the invasive populations, the dramatic genetic bottleneck and the allele distribution detected using microsatellites suggested that the original introduced Black Sea population could have been founded by very few individuals, perhaps only a single female and a single male. The initial invasive Black Sea population was likely an accidental introduction from Japan, and then invaded the Adriatic Sea by range expansion, which served as a source for subsequent invasive populations in Europe and America by various transport vectors. In addition, microsatellite alleles in the invasive populations showed a tendency to mutate with the addition or deletion of a single repeat, which is consistent with the stepwise mutation model. Our findings provide a good example of how an aquatic invader with a drastic genetic bottleneck and very low genetic diversity rapidly expands its geographical range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Balloux F, Lugon-Moulin N (2002) The estimation of population differentiation with microsatellite markers. Mol Ecol 11:155–165

    Article  Google Scholar 

  • Barrett RDH, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23:38–44

    Article  Google Scholar 

  • Beaumont MA (2010) Approximate Bayesian computation in evolution and ecology. Annu Rev Ecol Evol Syst 41:379–406

    Article  Google Scholar 

  • Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025–2035

    PubMed  PubMed Central  Google Scholar 

  • Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341–345

    Article  CAS  Google Scholar 

  • Bernardi G, Azzurro E, Golani D, Miller MR (2016) Genomic signatures of rapid adaptive evolution in the bluespotted cornetfish, a Mediterranean Lessepsian invader. Mol Ecol 25:3384–3396

    Article  CAS  Google Scholar 

  • Blackburn TM, Lockwood JL, Cassey P (2015) The influence of numbers on invasion success. Mol Ecol 24:1942–1953

    Article  Google Scholar 

  • Bock DG, Caseys C, Cousens RD et al (2015) What we still don’t know about invasion genetics. Mol Ecol 24:2277–2297

    Article  Google Scholar 

  • Bonelli AG, Giachetti CB, Jaureguizar AJ, Milessi AC (2016) First report of predation by a small shark on the invasive rapa whelk Rapana venosa (Valenciennes, 1846) in Argentinean waters. BioInvasions Rec 5:169–172

    Article  Google Scholar 

  • Canales-Aguirre C, Quiñones A, Hernández C, Neill P, Brante A (2015) Population genetics of the invasive cryptogenic anemone, Anemonia alicemartinae, along the southeastern Pacific coast. J Sea Res 102:1–9

    Article  Google Scholar 

  • Carranza A, de Mello C, Ligrone A, González S, Píriz P, Scarabino F (2010) Observations on the invading gastropod Rapana venosa in Punta del Este, Maldonado Bay, Uruguay. Biol Invasions 12:995–998

    Article  Google Scholar 

  • Carranza A, Scarabino F, Estrades A et al (2011) Loggerhead turtles Caretta caretta (Linnaeus) preying on the invading gastropod Rapana venosa (Valenciennes) in the Río de la Plata Estuary. Mar Ecol 32:142–147

    Article  Google Scholar 

  • Castellazzi M, Savini D, Ambrogi AO (2007) Shell morphotypes of the invasive gastropod Rapana venosa in the Northern Adriatic Sea. Boll Malacol 43:103–107

    Google Scholar 

  • Chandler E, Mcdowell J, Graves J (2008) Genetically monomorphic invasive populations of the rapa whelk, Rapana venosa. Mol Ecol 17:4079–4091

    Article  CAS  Google Scholar 

  • Chung EY, Kim SY, Park K, Park GM (2002) Sexual maturation, spawning, and deposition of the egg capsules of the female purple shell, Rapana venosa (Gastropoda: Muricidae). Malacologia 44:241–258

    Google Scholar 

  • Colautti RI, Lau JA (2015) Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol Ecol 24:1999–2017

    Article  Google Scholar 

  • Cornuet J-M, Santos F, Beaumont MA, Robert CP, Marin J-M, Balding DJ, Guillemaud T, Estoup A (2008) Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics 24(23):2713–2719

    Article  CAS  Google Scholar 

  • Cristescu ME (2015) Genetic reconstructions of invasion history. Mol Ecol 24:2212–2225

    Article  Google Scholar 

  • Croucher PJP, Mascheretti S, Garbelotto M (2013) Combining field epidemiological information and genetic data to comprehensively reconstruct the invasion history and the microevolution of the sudden oak death agent Phytophthora ramorum (Stramenopila: Oomycetes) in California. Biol Invasions 15:2281–2297

    Article  Google Scholar 

  • Darling JA (2015) Genetic studies of aquatic biological invasions: closing the gap between research and management. Biol Invasions 17:951–971

    Article  Google Scholar 

  • Dlugosch KM, Anderson SR, Braasch J, Cang FA, Gillette HD (2015) The devil is in the details: genetic variation in introduced populations and its contributions to invasion. Mol Ecol 24:2095–2111

    Article  Google Scholar 

  • Drapkin E (1963) Effect of Rapana bezoar Linne (Mollusca, Muricidae) on the Black Sea fauna. Dokl Akad Nauk SSSR 151:700–703

    Google Scholar 

  • Ellegren H (2014) Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol 29:51–63

    Article  Google Scholar 

  • Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  Google Scholar 

  • Frankham R (2005) Invasion biology-resolving the genetic paradoxin invasive species. Heredity 94:385

    Article  CAS  Google Scholar 

  • Garbelotto M, Rocca GD, Osmundson T, Lonardo VD, Danti R (2015) An increase in transmission-related traits and in phenotypic plasticity is documented during a fungal invasion. Ecosphere 6:180

    Article  Google Scholar 

  • Golani D, Azzurro E, Corsini-Foka M et al (2007) Genetic bottlenecks and successful biological invasions: the case of a recent Lessepsian migrant. Biol Let 3:541–545

    Article  Google Scholar 

  • Gotzek D, Axen HJ, Suarez AV, Helms Cahan S, Shoemaker D (2015) Global invasion history of the tropical fire ant: a stowaway on the first global trade routes. Mol Ecol 24:374–388

    Article  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www.unil.ch/izea/softwares/fstat.html

  • Harding JM (2003) Predation by blue crabs, Callinectes sapidus, on rapa whelks, Rapana venosa: possible natural controls for an invasive species? J Exp Mar Biol Ecol 297:161–177

    Article  Google Scholar 

  • Harding JM (2006) Growth and development of veined rapa whelk Rapana venosa veligers. J Shellfish Res 25:941–946

    Article  Google Scholar 

  • Harding JM, Mann R (2005) Veined rapa whelk (Rapana venosa) range extensions in the Virginia waters of Chesapeake Bay, USA. J Shellfish Res 24:381–385

    Article  Google Scholar 

  • Harding JM, Mann R, Kilduff CW (2007) The effects of female size on fecundity in a large marine gastropod Rapana venosa (Muricidae). J Shellfish Res 26:33–42

    Article  Google Scholar 

  • Harrison E, Trexler JC, Collins TM et al (2014) Genetic evidence for multiple sources of the non-native fish Cichlasoma urophthalmus (Günther; Mayan Cichlids) in Southern Florida. PLoS ONE 9:e104173

    Article  Google Scholar 

  • Hellberg ME, Burton RS, Neigel JE, Palumbi SR (2002) Genetic assessment of connectivity among marine populations. Bull Mar Sci 70:273–290

    Google Scholar 

  • Husseneder C, Simms DM, Delatte JR et al (2012) Genetic diversity and colony breeding structure in native and introduced ranges of the Formosan subterranean termite, Coptotermes formosanus. Biol Invasions 14:419–437

    Article  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:1

    Article  Google Scholar 

  • Kasuga T, Mannhaupt G, Glass NL (2009) Relationship between phylogenetic distribution and genomic features in Neurospora crassa. PLoS ONE 4:e5286

    Article  Google Scholar 

  • Kasuga T, Mai B, Bernhardt E et al (2016) Host-induced aneuploidy and phenotypic diversification in the Sudden Oak Death pathogen Phytophthora ramorum. BMC Genom 17:385

    Article  Google Scholar 

  • Kekkonen J, Wikström M, Brommer JE (2012) Heterozygosity in an isolated population of a large mammal founded by four individuals is predicted by an individual-based genetic model. PLoS ONE 7:e43482

    Article  CAS  Google Scholar 

  • Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191

    Article  CAS  Google Scholar 

  • Kos’yan A (2013) Comparative analysis of Rapana venosa (Valenciennes, 1846) from different biotopes of the Black Sea based on its morphological characteristics. Oceanology 53:47–53

    Article  Google Scholar 

  • Lezama C, Carranza A, Fallabrino A, Estrades A, Scarabino F, López-Mendilaharsu M (2013) Unintended backpackers: bio-fouling of the invasive gastropod Rapana venosa on the green turtle Chelonia mydas in the Río de la Plata Estuary, Uruguay. Biol Invasions 15:483–487

    Article  Google Scholar 

  • Li Y-L, Liu J-X (2018) StructureSelector: a web based software to select and visualize the optimal number of clusters using multiple methods. Mol Ecol Resour 18:176–177

    Article  Google Scholar 

  • Malcolm DS, Aquadro F (1997) Low mutation rates of microsatellite loci in Drosophila melanogaster. Nat Genet 15:99

    Article  Google Scholar 

  • Mann R, Harding JM (2000) Invasion of the North American Atlantic coast by a large predatory Asian mollusc. Biol Invasions 2:7–22

    Article  Google Scholar 

  • Mann R, Harding JM (2003) Salinity tolerance of larval Rapana venosa: implications for dispersal and establishment of an invading predatory gastropod on the North American Atlantic coast. Biol Bull 204:96–103

    Article  CAS  Google Scholar 

  • Mann R, Occhipinti A, Harding JM (2004) Alien species alert: Rapana venosa (veined whelk). Int Counc Explor Sea Coop Res Rep 264:1–14

    Google Scholar 

  • Mascheretti S, Croucher PJP, Kozanitas M, Baker L, Garbelotto M (2009) Genetic epidemiology of the sudden oak death pathogen Phytophthora ramorum in California. Mol Ecol 18:4577–4590

    Article  CAS  Google Scholar 

  • Meimberg H, Hammond JI, Jorgensen CM et al (2006) Molecular evidence for an extreme genetic bottleneck during introduction of an invading grass to California. Biol Invasions 8:1355–1366

    Article  Google Scholar 

  • Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7:783–787

    Article  CAS  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170

    Article  CAS  Google Scholar 

  • Nieweg D, Post J, Vink R (2005) Rapana venosa (Gastropoda: Muricidae): a new invasive species in the North Sea. Deinsea 11:169–174

    Google Scholar 

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65

    Article  CAS  Google Scholar 

  • Park S (2001) Trypanotolerance in West African cattle and the population genetic effects of selection. Ph. D. thesis, University of Dublin

  • Pastorino G, Penchaszadeh PE, Schejter L, Bremec C (2000) Rapana Venosa (Valenciennes, 1846) (Mollusca: Muricidae): a new gastropod in South Atlantic waters. J Shellfish Res 19:897–899

    Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  Google Scholar 

  • Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95(6):536–539

    Article  CAS  Google Scholar 

  • Prentis PJ, Wilson JR, Dormontt EE, Richardson DM, Lowe AJ (2008) Adaptive evolution in invasive species. Trends Plant Sci 13:288–294

    Article  CAS  Google Scholar 

  • Pritchard J, Wen X, Falush D (2009) Documentation for structure software: version 2.3. University of Chicago, Chicago, pp 1–37

    Google Scholar 

  • Puillandre N, Dupas S, Dangles O et al (2008) Genetic bottleneck in invasive species: the potato tuber moth adds to the list. Biol Invasions 10:319–333

    Article  Google Scholar 

  • Purcell K, Ling N, Stockwell C (2012) Evaluation of the introduction history and genetic diversity of a serially introduced fish population in New Zealand. Biol Invasions 14:2057–2065

    Article  Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistical computing, reference index version 3.2.2. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464

    Article  Google Scholar 

  • Rousset F (2008) GENEPOP ‘007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Scarabino F, Menafra R, Etchegaray P (1999) Presence of Rapana venosa (Valenciennes, 1846) (Gastropoda: Muricidae) in the Río de la Plata. Boletín de la Sociedad Zoológica del Uruguay (Actas de las V Jornadas de Zoología del Uruguay)11(Segunda época):40 (in Spanish)

  • Schmid-Hempel P, Schmid-Hempel R, Brunner P, Seeman O, Allen G (2007) Invasion success of the bumblebee, Bombus terrestris, despite a drastic genetic bottleneck. Heredity 99:414–422

    Article  CAS  Google Scholar 

  • Snigirov S, Medinets V, Chichkin V, Sylantyev S (2013) Rapa whelk controls demersal community structure off Zmiinyi Island, Black Sea. Aquat Invasions 8(3):289–297

    Article  Google Scholar 

  • Takezaki N, Nei M, Tamura K (2010) POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Mol Biol Evol 27:747–752

    Article  CAS  Google Scholar 

  • Tsutsui ND, Suarez AV, Holway DA, Case TJ (2000) Reduced genetic variation and the success of an invasive species. Proc Natl Acad Sci 97:5948–5953

    Article  CAS  Google Scholar 

  • Valade R, Kenis M, Hernandez-Lopez A et al (2009) Mitochondrial and microsatellite DNA markers reveal a Balkan origin for the highly invasive horse-chestnut leaf miner Cameraria ohridella (Lepidoptera, Gracillariidae). Mol Ecol 18:3458–3470

    Article  CAS  Google Scholar 

  • Weetman D, Hauser L, Carvalho GR (2002) Reconstruction of microsatellite mutation history reveals a strong and consistent deletion bias in invasive clonal snails, Potamopyrgus antipodarum. Genetics 162:813–822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitney KD, Gabler CA (2008) Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Divers Distrib 14:569–580

    Article  Google Scholar 

  • Xue D-X, Zhang T, Liu J-X (2014) Microsatellite evidence for high frequency of multiple paternity in the marine gastropod Rapana venosa. PLoS ONE 9:e86508

    Article  Google Scholar 

  • Xue D-X, Zhang T, Liu J-X (2016) Influences of population density on polyandry and patterns of sperm usage in the marine gastropod Rapana venosa. Sci Rep 6:23461

    Article  CAS  Google Scholar 

  • Xue D-X, Zhang T, Li Y-L, Liu J-X (2017) Genetic diversity and population structure of the veined rapa whelk Rapana venosa along the coast of China based on microsatellites. Fish Sci 83:563–572

    Article  CAS  Google Scholar 

  • Zhang FS (1980) Studies on species of Murididae off the China coasts* III. Rapana. Stud Mar Sin 16:113–123 (in Chinese with English abstract)

    Google Scholar 

  • Zhang H, Geller JB, Vrijenhoek RC (2014) Genetic diversity in native and introduced populations of the amethyst gem clam Gemma gemma (Totten, 1834) from the US east and west coasts. Biol Invasions 16:2725–2735

    Article  Google Scholar 

  • Zolotarev V (1996) The Black Sea ecosystem changes related to the introduction of new mollusc species. Mar Ecol 17:227–236

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by AoShan Talents Program supported by Qingdao National Laboratory for Marine Science and Technology (No. 2015ASTP-ES05), a grant from the National Natural Science Foundation of China (No. 31200280), the NSFC-Shandong Joint Fund for Marine Ecology and Environmental Sciences (No. U1606404). We thank Nadya R. Mamoozadeh for his help in preparing samples.

Author information

Authors and Affiliations

Authors

Contributions

G.J. and L.J.X. designed research, X.D.X. performed research, C.A., S.S., S.S. and T.Z. provided some samples, X.D.X. and L.J.X. analyzed data, X.D.X., G.J. and L.J.X wrote the paper and all authors contributed substantially to revisions.

Corresponding author

Correspondence to Jin-Xian Liu.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 415 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, DX., Graves, J., Carranza, A. et al. Successful worldwide invasion of the veined rapa whelk, Rapana venosa, despite a dramatic genetic bottleneck. Biol Invasions 20, 3297–3314 (2018). https://doi.org/10.1007/s10530-018-1774-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-018-1774-4

Keywords

Navigation