Skip to main content

Advertisement

Log in

Ecological limits can obscure expansion history: patterns of genetic diversity in a temperate mosquito in Hawaii

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Because biological invasions can be swift and are rarely examined immediately and/or followed over time, spatial genetic diversity analyses grounded in a well-developed body of theory are often used to reconstruct historical patterns of expansion. Unfortunately, the role of selection in shaping and potentially disrupting such reconstructions has seldom been examined. The mosquito Aedes japonicus japonicus is a temperate, cold-adapted species native to northern Japan that has recently established populations on the island of Hawaii. We used variation at seven microsatellite loci and one mitochondrial locus to examine Hawaiian populations collected in 2004, shortly after its first detection, and then in 2010–2011. Samples were collected along an elevational/temperature gradient, ranging from sea level to 1,200 m. Specimens collected near sea level in 2004 from the earliest detected population exhibited high genetic diversity. Contrary to expectations that diversity would decrease outward from the point of introduction, in 2010–2011 high elevation populations had the greatest genetic diversity, while low elevation populations (including those with high diversity in 2004) now had lower diversity and were significantly differentiated from each other, suggesting severe bottlenecks. We hypothesize that differential survival across temperatures at high versus low elevations has subverted the expected genetic signature of an expanding population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amsellem L, Noyer JL, Le Bourgeois T et al (2000) Comparison of genetic diversity of the invasive weed Rubus alceifolius poir. (Rosaceae) in its native range and in areas of introduction, using amplified fragment length polymorphism (AFLP) markers. Mol Ecol 9:443–455

    Article  CAS  PubMed  Google Scholar 

  • Austerlitz F, Jung-Muller B, Godelle B et al (1997) Evolution of coalescence times, genetic diversity and structure during colonization. Theor Popul Biol 51:148–164

    Article  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  CAS  PubMed  Google Scholar 

  • Egizi A, Morin PJ, Fonseca DM (2014) Unraveling microbe-mediated interactions between mosquito larvae in a laboratory microcosm. Aquat Ecol 48:179–189

  • Estoup A, Beaumont M, Sennedot F et al (2004) Genetic analysis of complex demographic scenarios: spatially expanding populations of the cane toad, Bufo marinus. Evolution 58:2021–2036

    Article  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Ecol 13:853–864

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Foll M, Petit RJ (2008) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501

    Article  Google Scholar 

  • Fitzpatrick B, Fordyce J, Niemiller M et al (2012) What can DNA tell us about biological invasions? Biol Invasions 14:245–253

    Article  Google Scholar 

  • Foll M, Gaggiotti O (2006) Identifying the environmental factors that determine the genetic structure of populations. Genetics 174:875–891

  • Fonseca DM, Campbell S, Crans WJ et al (2001) Aedes (Finlaya) japonicus (Diptera: Culicidae), a newly recognized mosquito in the United States: analyses of genetic variation in the United States and putative source populations. J Med Entomol 38:135–146

    Article  CAS  PubMed  Google Scholar 

  • Fonseca DM, Widdel AK, Hutchinson M et al (2010) Fine-scale spatial and temporal population genetics of Aedes japonicus, a new US mosquito, reveal multiple introductions. Mol Ecol 19:1559–1572

    Article  CAS  PubMed  Google Scholar 

  • Fonseca DM, Kaplan LR, Heiry RA, et al. (2014) Studies of ovipositing Aedes albopictus reveal a highly adaptable and risk-averse invader. Med Vet Entomol, accepted

  • Funk WC, Blouin MS, Corn PS et al (2005) Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol Ecol 14:483–496

    Article  CAS  PubMed  Google Scholar 

  • Gaggiotti O, Foll M (2010) Quantifying population structure using the F-model. Mol Ecol Res 10:821–830

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-Statistics. J Hered 86:485–486

    Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    Article  CAS  PubMed  Google Scholar 

  • Herborg LM, Weetman D, van Oosterhout C et al (2007) Genetic population structure and contemporary dispersal patterns of a recent European invader, the Chinese mitten crab, Eriocheir sinensis. Mol Ecol 16:231–242

    Article  CAS  PubMed  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Huey RB, Gilchrist GW, Carlson ML et al (2000) Rapid evolution of a geographic cline in size in an introduced fly. Science 287:308–309

    Article  CAS  PubMed  Google Scholar 

  • Kaufman MG, Fonseca DM (2014) Invasion biology of Aedes japonicus japonicus (Diptera: Culicidae). Annu Rev Entomol 59:31–49

  • Keyghobadi N, Lapointe D, Fleischer RC et al (2006) Fine-scale population genetic structure of a wildlife disease vector: the southern house mosquito on the island of Hawaii. Mol Ecol 15:3919–3930

    Article  CAS  PubMed  Google Scholar 

  • LaPointe DA (2006) Feral pigs, introduced mosquitoes, and the decline of Hawaiian birds. U.S. Geological Survey Fact Sheet 2006–3029

  • Larish LB, Savage HM (2005) Introduction and establishment of Aedes (Finlaya) japonicus japonicus (Theobald) on the island of Hawaii: implications for arbovirus transmission. J Am Mosq Control Assoc 21:318–321

    Article  PubMed  Google Scholar 

  • Larish LB, Yang P, Asuncion BA (2010) Distribution and abundance of Aedes (Finlaya) japonicus japonicus (Theobald) in five districts on the island of Hawaii. Proc Hawaii Entomol Soc 42:9–14

    Google Scholar 

  • Le Corre V, Kremer A (1998) Cumulative effects of founding events during colonisation on genetic diversity and differentiation in an island and stepping-stone model. J Evol Biol 11:495–512

    Article  Google Scholar 

  • Leberg PL (2002) Estimating allelic richness: effects of sample size and bottlenecks. Mol Ecol 11:2445–2449

    Article  CAS  PubMed  Google Scholar 

  • Liebherr JK (1986) Comparison of genetic variation in two Carabid beetles (Coleoptera) of differing vagility. Ann Entomol Soc Am 79:424–433

    Google Scholar 

  • Lozier JD, Strange JP, Stewart IJ et al (2011) Patterns of range-wide genetic variation in six North American bumble bee (Apidae: Bombus) species. Mol Ecol 20:4870–4888

    Article  PubMed  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Mestres F, Abad L, Sabater-Muñoz B et al (2004) Colonization of America by Drosophila subobscura: association between Odh gene haplotypes, lethal genes and chromosomal arrangements. Genes Genet Syst 79:233–244

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Ohsawa T, Ide Y (2008) Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Glob Ecol Biogeogr 17:152–163

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R et al. (2013) Vegan: community ecology package. R package version 2.0-7

  • Peakall ROD, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel: population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peyton EL, Campbell SR, Candeletti TM et al (1999) Aedes (Finlaya) japonicus japonicus (Theobald), a new introduction into the United States. J Am Mosq Control Assoc 15:238–241

    CAS  PubMed  Google Scholar 

  • Potvin C, Simon J-P, Strain B (1986) Effect of low temperature on the photosynthetic metabolism of the C4 grass Echinochloa crus-galli. Oecologia 69:499–506

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Ray N, Currat M, Excoffier L (2003) Intra-deme molecular diversity in spatially expanding populations. Mol Biol Evol 20:76–86

    Article  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reiter P (2007) Oviposition, dispersal, and survival in Aedes aegypti: implications for the efficacy of control strategies. Vector Borne Zoonotic Dis 7:261–273

    Article  PubMed  Google Scholar 

  • Roppo MR, Lilja JL, Maloney FA et al (2004) First occurrence of Ochlerotatus japonicus in the state of Washington. J Am Mosq Control Assoc 20:83–84

    PubMed  Google Scholar 

  • Roy S, Simon JP, Lapointe FJ (2000) Determination of the origin of the cold-adapted populations of barnyard grass (Echinochloa crusgalli) in eastern North America: a total-evidence approach using RAPD DNA and DNA sequences. Can J Bot. Journal canadien de botanique 78:1505–1513

    Article  CAS  Google Scholar 

  • Schaffner F, Kaufmann C, Hegglin D et al (2009) The invasive mosquito Aedes japonicus in Central Europe. Med Vet Entomol 23:448–451

    Article  CAS  PubMed  Google Scholar 

  • Schiffer M, Kennington WJ, Hoffmann AA et al (2007) Lack of genetic structure among ecologically adapted populations of an Australian rainforest Drosophila species as indicated by microsatellite markers and mitochondrial DNA sequences. Mol Ecol 16:1687–1700

    Article  CAS  PubMed  Google Scholar 

  • Schulte U, Veith M, Mingo V et al. (2013) Strong genetic differentiation due to multiple founder events during a recent range expansion of an introduced wall lizard population. Biol Invasions 15:2639–2649

  • Scott JJ (2003) The ecology of the exotic mosquito Ochlerotatus (Finlay) japonicus japonicus (Theobald 1901) (Diptera: Culicidae) and an examination of its role in the West Nile virus cycle in New Jersey. Department of Entomology. Rutgers University

  • Sherwin WB (2010) Entropy and information approaches to genetic diversity and its expression: genomic geography. Entropy 12:1765–1798

    Article  CAS  Google Scholar 

  • Sherwin WB, Jabot F, Rush R et al (2006) Measurement of biological information with applications from genes to landscapes. Mol Ecol 15:2857–2869

    Article  PubMed  Google Scholar 

  • Short KH, Petren K (2011) Fine-scale genetic structure arises during range expansion of an invasive gecko. PLoS One 6:e26258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spear SF, Peterson CR, Matocq MD et al (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol Ecol 14:2553–2564

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Mizusawa K, Saugstad ES (1979) A revision of the adult and larval mosquitoes of Japan (including the Ryukyu Archipelago and the Ogasawara islands) and Korea (Diptera:Culicidae). Contrib Am Entomol Inst 16:1–987

    Google Scholar 

  • Thielman A, Hunter FF (2006) Establishment of Ochlerotatus japonicus (Diptera: Culicidae) in Ontario, Canada. J Med Entomol 43:138–142

    Article  PubMed  Google Scholar 

  • Urbanski J, Mogi M, O’Donnell D et al (2012) Rapid adaptive evolution of photoperiodic response during invasion and range expansion across a climatic gradient. Am Nat 179:490–500

    Article  PubMed  Google Scholar 

  • Wegmann D, Currat M, Excoffier L (2006) Molecular diversity after a range expansion in heterogeneous environments. Genetics 174:2009–2020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wen CS, Hsiao JY (2001) Altitudinal genetic differentiation and diversity of Taiwan Lily (Lilium longiflorum var. formosanum; Liliaceae) using RAPD markers and morphological characters. Int J Plant Sci 162:287–295

    Article  CAS  Google Scholar 

  • Widdel AK, McCuiston LJ, Crans WJ et al (2005) Finding needles in the haystack: single copy microsatellite loci for Aedes japonicus (Diptera: Culicidae). Am J Trop Med Hyg 73:744–748

    CAS  PubMed  Google Scholar 

  • Williams CK, Moore RJ (1989) Phenotypic adaptation and natural selection in the wild rabbit, Oryctolagus cuniculus, in Australia. J Anim Ecol 58:495–507

    Article  Google Scholar 

  • Zielke DE, Werner D, Kampen H et al. (2014) Unexpected patterns of admixture in German populations of Aedes japonicus japonicus (Diptera: Culicidae) underscore the importance of human intervention. PLoS One, accepted

Download references

Acknowledgments

The authors thank Linda Larish for answering questions about Ae. j. japonicus in Hawaii and for generously providing the 2004 specimens; Dr. Dennis LaPointe for answering questions, providing the Volcano specimens and assisting with access to Tree Planting populations; Dr. Jiawu Xu for developing the new ND4 primer; Dana C. Price for assistance in collecting specimens; and Dr. Peter Smouse and Dr. James A. Fordyce, for excellent comments on earlier drafts of this manuscript. This work was funded by a Rutgers Graduate School Pre-Dissertation Travel Award and Rutgers Ecology and Evolution Buell Award to A. Egizi, and by USDA Hatch Grant #NJ08194, NE-1043 Multistate funds, and start-up funds to D. M. Fonseca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Egizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egizi, A., Fonseca, D.M. Ecological limits can obscure expansion history: patterns of genetic diversity in a temperate mosquito in Hawaii. Biol Invasions 17, 123–132 (2015). https://doi.org/10.1007/s10530-014-0710-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-014-0710-5

Keywords

Navigation