Skip to main content
Log in

Low allelochemical concentrations detected in garlic mustard-invaded forest soils inhibit fungal growth and AMF spore germination

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Garlic mustard’s (Alliaria petiolata, Brassicaceae) invasive success is attributed in part to its release of allyl isothiocyanate (AITC) into the soil. AITC can disrupt beneficial arbuscular mycorrhizal fungi (AMF) associated with native plant roots, which limits their soil resource uptake. However, AITC and its precursor, sinigrin, have never been detected in garlic mustard-invaded forest soils. Here, we use high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC–MS) to assess the concentration and bioactivity of these putative allelochemicals in paired forest plots uninvaded or invaded by garlic mustard. Our methods detected AITC and sinigrin only where garlic mustard was present and our recovery of AITC/sinigrin coincided with adult senescence. A bioassay of in situ fungal hyphae abundance revealed significantly reduced hyphal abundance in the presence of garlic mustard relative to uninvaded soils. Finally, the lowest concentration of AITC measured in the field (~0.001 mM) is highly inhibitory to the spore germination of a forest AMF species, Glomus clarum. Together, our data provide the first direct evidence of garlic mustard-produced sinigrin and AITC in forest soils and demonstrate that even low levels of these chemicals have the potential to significantly suppress AMF growth and spore germination, strengthening their status as allelopathic novel weapons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agerbirk N, Petersen B, Olsen CE, Halkier BA, Nielson JK (2001) 1, 4-Dimethoxyglucobrassicin in Barbarea and 4-hydroxyglucobrassicin in Arabidopsis and Brassica. J Agric Food Chem 49:1502–1507

    Article  PubMed  CAS  Google Scholar 

  • Anderson RC, Dhillion SS, Kelley TM (1996) Aspects of the ecology of an invasive plant, garlic mustard (Alliaria petiolata), in central Illinois. Restor Ecol 4:181–191

    Article  Google Scholar 

  • Anderson RC, Anderson MR, Bauer JT, Slater M, Herold J, Baumhardt P, Borowicz V (2010) Effect of removal of garlic mustard (Alliaria petiolata, Brassicaeae) on arbuscular mycorrhizal fungi inoculum potential in forest soils. Open Ecol J 3:41–47

    Google Scholar 

  • Baláz M, Vosátka M (2001) A novel inserted membrane technique for studies of mycorrhizal extraradical mycelium. Mycorrhiza 11:291–296

    Article  Google Scholar 

  • Barto EK (2008) An assessment of the allelopathic potential of Alliaria petiolata. Dissertation, Wright State University

  • Barto EK, Cipollini D (2009a) Density-dependent phytotoxicity of Impatiens pallida plants exposed to extracts of Alliaria petiolata. J Chem Ecol 35:495–504. doi:10.1007/s10886-009-9629-1

    Article  PubMed  CAS  Google Scholar 

  • Barto EK, Cipollini D (2009b) Half-lives and field soil concentrations of Alliaria petiolata secondary metabolites. Chemosphere 76:71–75

    Article  PubMed  Google Scholar 

  • Barto EK, Powell JR, Cipollini D (2010a) How novel are the chemical weapons of garlic mustard in North American forest understories? Biol Invasions. doi:10.1007/s10530-010-9744-5

  • Barto K, Friese C, Cipollini D (2010b) Arbuscular mycorrhizal fungi protect a native plant from allelopathic effects of an invader. J Chem Ecol 36:351–360

    Article  PubMed  CAS  Google Scholar 

  • Blair AC, Leslie A, Weston LA, Nissen SJ, Brunk GR, Hufbauer RA (2009) The importance of analytical techniques in allelopathy studies with the reported allelochemical catechin as an example. Biol Invasions 11:325–332. doi:10.1007/s10530-008-9250-1

    Article  Google Scholar 

  • Borek V, Morra MJ, Brown PJ, McCaffery JP (1995) Transformation of the glucosinolate-derived allelochemicals allyl isothiocyanate and allylnitrile in soil. J Agric Food Chem 43:1935–1940

    Article  CAS  Google Scholar 

  • Brown PD, Morra MJ (1997) Control of soil-borne plant pests using glucosinolate-containing plants. Adv Agron 61:167–231

    Article  CAS  Google Scholar 

  • Brundrett M, Kendrick B (1988) The mycorrhizal status, root anatomy, and phenology of plants in a sugar maple forest. Can J Bot 66:1153–1173

    Article  Google Scholar 

  • Brundrett M, Kendrick B (1990) The roots and mycorrhizas of herbaceous woodland plants. I. Quantitative aspects of morphology. New Phytol 114:457–468

    Article  Google Scholar 

  • Burke DJ (2008) Effects of Alliaria petiolata (garlic mustard; Brassicaceae) on mycorrhizal colonization and community structure in three herbaceous plants in a mixed deciduous forest. Am J Bot 95:1416–1425

    Article  PubMed  Google Scholar 

  • Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523

    Article  PubMed  CAS  Google Scholar 

  • Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443

    Article  Google Scholar 

  • Callaway RM, Cipollini D, Barto K, Thelen GC, Hallett SG, Prati D, Stinson K, Klironomos J (2008) Novel weapons: Invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89:1043–1055

    Article  PubMed  Google Scholar 

  • Choesin DN, Boerner REJ (1991) Allyl isothiocyanate release and the allelopathic potential of Brassica napus (Brassicaeae). Am J Bot 78:1083–1090

    Article  CAS  Google Scholar 

  • Cipollini D (2002) Variation in the expression of chemical defenses in Alliaria petiolata (Brassicaeae) in the field and common garden. Am J Bot 89:1422–1430

    Article  PubMed  CAS  Google Scholar 

  • Cipollini D, Gruner B (2007) Cyanide in the chemical arsenal of garlic mustard, Alliaria petiolata. J Chem Ecol 33:85–94

    Article  PubMed  CAS  Google Scholar 

  • Feeny P, Rosenberry L (1982) Seasonal variation in the glucosinolate content of North American Brassica nigra and Dentaria species. Biochem Syst Ecol 10:23–32

    Article  CAS  Google Scholar 

  • Gimsing AL, Kirkegaard JA (2006) Glucosinolate and isothiocyanate concentration in soil following incorporation of Brassica biofumigants. Soil Biol Biochem 38:2255–2264

    Article  CAS  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Gols R, Raaijmakers CE, van Dam NM, Dicke M, Bukovinszky T, Harvey JA (2007) Temporal changes affect plant chemistry and tritrophic interactions. Basic Appl Ecol 8:421–433

    Article  Google Scholar 

  • Haribal M, Renwick JAA (1998) Isovitexin 6″-O-β-D-glucopyranoside: a feeding deterrent to Pieris napi oleracea from Alliaria petiolata. Phytochemistry 47:1237–1240

    Article  CAS  Google Scholar 

  • Haribal M, Renwick JAA (2001) Seasonal and population variation in flavonoid and alliarinoside content of Alliaria petiolata. J Chem Ecol 27:1585–1594

    Article  PubMed  CAS  Google Scholar 

  • Haribal M, Yang Z, Attygalle AB, Renwick JAA, Meinwald J (2001) A cyanoallyl glucoside from Alliaria petiolata as a feeding deterrent for larvae of Pieris napi oleracea. J Nat Prod 64:440–443

    Article  PubMed  CAS  Google Scholar 

  • Harris DC (2003) Quantitative chemical analysis. W. H. Freeman and Company, New York

    Google Scholar 

  • He W-M, Feng Y, Ridenour WM, Thelen GC, Pollock JL, Diaconu A, Callaway RM (2009) Novel weapons and invasion: biogeographic difference in the competitive effects of Centaurea maculosa and its root exudates (±) catechin. Oecologia 159:803–815

    Article  PubMed  Google Scholar 

  • Hierro JL, Callaway RM (2003) Allelopathy and exotic plant invasions. Plant Soil 256:29–39

    Article  CAS  Google Scholar 

  • Inderjit, Weiner J (2001) Plant allelochemical interference or soil chemical ecology? Perspect Plant Ecol Evol Syst 4:3–12

    Article  Google Scholar 

  • Inderjit, Dakshini KMM (1999) Bioassays for allelopathy: interactions of soil organic and inorganic constituents. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press LLC, Boca Raton, FL, pp 35–44

    Google Scholar 

  • Inderjit, Pollock JL, Callaway RM, Holben W (2008) Phytotoxic effects of (±)-catechin in vitro, in soil, and in the field. PLoS ONE 3:e2536. doi:10.1371/journal.pone.0002536

    Article  PubMed  CAS  Google Scholar 

  • Klironomos JN, Hart M (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12:181–184

    Article  PubMed  Google Scholar 

  • Lankau R (2010) Soil microbial communities alter allelopathic competition between Alliaria petiolata and a native species. Biol Invasions 12:2059–2068. doi:10.1007/s10530-009-9608-z

    Article  Google Scholar 

  • Lankau RA, Nuzzo V, Spyreas G, Davis AS (2009) Evolutionary limits ameliorate the negative impact of an invasive plant. Proc Natl Acad Sci USA 106:15362–15367

    Article  PubMed  CAS  Google Scholar 

  • Lind EM, Parker JD (2010) Novel weapons testing: Are invasive plants more chemically defended than native plants? PLoS ONE 5:e10429. doi:10.1371/journal.pone.0010429

    Article  PubMed  Google Scholar 

  • McCarthy BC, Hanson SL (1998) An assessment of the allelopathic potential of the invasive weed Alliaria petiolata (Brassicaceae). Castanea 63:68–73

    Google Scholar 

  • Merryweather J, Fitter A (1995) Phosphorus and carbon budgets: mycorrhizal contribution in Hyacinthoides non-scripta (L.) Chouard ex Rothm. under natural conditions. New Phytol 129:619–627

    Article  Google Scholar 

  • Nuzzo VA (1993) Distribution and spread of the invasive biennial Alliaria petiolata (Bieb. [Cavara and Grande]) in North America. In: McKnight BL (ed) Biological pollution: Control and impact of invasive exotic species. Indiana Academy of Science, Indianapolis, pp 115–124

    Google Scholar 

  • Nuzzo V (2000) Element stewardship abstract for Alliaria petiolata (Alliaria officinalis), garlic mustard. The Nature Conservancy, Arlington, p 19

    Google Scholar 

  • Olivier C, Vaughn SF, Mizubuti ESG, Loria R (1999) Variation in allyl isothiocyanate production within Brassica species and correlation with fungicidal activity. J Chem Ecol 25:2687–2701

    Article  CAS  Google Scholar 

  • Orr SP, Rudgers JA, Clay K (2005) Invasive plants can inhibit native tree seedlings: testing potential allelopathic mechanisms. Plant Ecol 181:153–165

    Article  Google Scholar 

  • Prati D, Bossdorf O (2004) Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). Am J Bot 91:285–288

    Article  PubMed  Google Scholar 

  • Rice EL (1974) Allelopathy. Academic Press, New York

    Google Scholar 

  • Roberts KJ, Anderson RC (2001) Effect of garlic mustard [Alliaria petiolata (Beib. Cavara & Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. Am Midl Nat 146:146–152

    Article  Google Scholar 

  • Rodgers V, Stinson KA, Finzi AC (2008) Ready or not, garlic mustard is moving in: Alliaria petiolata as a member of eastern North American forests. Bioscience 58:426–436

    Article  Google Scholar 

  • Stein SE (2005) Mass spectra. In: Linstrom PJ, Mallard WG (eds) NIST Standard Reference Database Number 69: NIST chemistry WebBook. National Institute of Standards and Technology, http://webbook.nist.gov/cgi/inchi/InChI%3D1S/C4H5NS/c1-2-3-5-4-6/h2H%2C1%2C3H2. Accessed 17 Aug 2010

  • Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, Hallet SG, Prati D, Klironomos JN (2006) Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol 4:727–731

    Article  CAS  Google Scholar 

  • Thorpe AS, Thelen GC, Diaconu A, Callaway RM (2009) Root exudate is allelopathic in invaded community but not in native community: field evidence for the novel weapons hypothesis. J Ecol 97:641–645

    Article  Google Scholar 

  • Tsao R, Yu Q, Friesen I, Potter J, Chiba M (2000) Factors affecting the dissolution and degradation of oriental mustard-derived sinigrin and allyl isothiocyanate in aqueous media. J Chem Ecol 48:1901–1902

    Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Vaughn SF, Berhow MA (1999) Allelochemicals isolated from tissues of the invasive weed garlic mustard (Alliaria petiolata). J Chem Ecol 25:2495–2504

    Article  CAS  Google Scholar 

  • Wolfe BE, Rodgers VL, Stinson KA, Pringle A (2008) The invasive plant Alliaria petiolata (garlic mustard) inhibits ectomycorrhizal fungi in its introduced range. J Ecol 96:777–783

    Article  Google Scholar 

  • Zhang Y, Cho C-G, Posner GH, Talalay P (1992) Spectroscopic quantitation of organic isothiocyanates by cyclocondensation with vicinal dithiols. Anal Biochem 205:100–107

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Wade KL, Prestera T, Talalay P (1996) Quantitative determination of isothiocyanates, dithiocarbamates, carbon disulfide, and related thiocarbonyl compounds by cyclocondensation with 1, 2-benzenedithiol. Anal Biochem 239:160–167

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Science Foundation for award DEB 0958676 to SK, University of Pittsburgh Startup Grant to MBT, Phipps Conservatory and Botanical Garden Botany-in-Action Fellowship and a Mellon Fellowship to AH, the Howard Hughes Medical Institute for support of AC and JA, the National Aeronautics and Space Administration Pennsylvania Space Grant Consortium Research Scholarship for funding to AC, W. Saunders for incubator space, J. Williams at the University of Pittsburgh’s GC–MS lab for assistance with sample analysis, J. Hale at the University of Pittsburgh Department of Chemistry for advice on analytical chemistry methods, J.L. Dunn for lab and field assistance, J. Morton of INVAM and W.D. Holtzclaw of Johns Hopkins University for advice, T. H. Nguyen and T. Korpar for field assistance in the soil membrane experiment, and the Borough of Fox Chapel for permission to conduct experimental work at Trillium Trail. We thank two anonymous reviewers for their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Kalisz.

Additional information

Aaron Cantor and Alison Hale are contributed equally.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cantor, A., Hale, A., Aaron, J. et al. Low allelochemical concentrations detected in garlic mustard-invaded forest soils inhibit fungal growth and AMF spore germination. Biol Invasions 13, 3015–3025 (2011). https://doi.org/10.1007/s10530-011-9986-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-011-9986-x

Keywords

Navigation