Skip to main content
Log in

Re-engineering Escherichia coli for ethanol production

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A lactate producing derivative of Escherichia coli KO11, strain SZ110, was re-engineered for ethanol production by deleting genes encoding all fermentative routes for NADH and randomly inserting a promoterless mini-Tn5 cassette (transpososome) containing the complete Zymomonas mobilis ethanol pathway (pdc, adhA, and adhB) into the chromosome. By selecting for fermentative growth in mineral salts medium containing xylose, a highly productive strain was isolated in which the ethanol cassette had been integrated behind the rrlE promoter, designated strain LY160 (KO11, Δfrd::celY Ec ΔadhE ΔldhA, ΔackA lacA::casAB Ko rrlE::(pdc Zm -adhA Zm -adhB Zm -FRT-rrlE) pflB +). This strain fermented 9% (w/v) xylose to 4% (w/v) ethanol in 48 h in mineral salts medium, nearly equal to the performance of KO11 with Luria broth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alterthum F, Ingram LO (1989) Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli. Appl Environ Microbiol 55:1943–1948

    PubMed  CAS  Google Scholar 

  • Arntzen CE, Dale BE (1999) Biobased industrial products priorities for research and commercialization. National Academy Press, Washington, DC

    Google Scholar 

  • Asghari A, Bothast RJ, Doran JB, Ingram LO (1996) Ethanol production from hemicellulose hydrolysates of agricultural residues using genetically engineered Escherichia coli. J Ind Microbiol 16:42–47

    Article  CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) (1987) Current protocols in molecular biology. Wiley, Inc, New York

    Google Scholar 

  • Causey TB, Zhou S, Shanmugam KT, Ingram LO (2003) Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proc Natl Acad Sci USA 100:825–832

    Article  PubMed  CAS  Google Scholar 

  • Conway T, Sewell GW, Osman YA, Ingram LO (1987) Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis. J Bacteriol 169:2591–2597

    PubMed  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  • de Lorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572

    PubMed  Google Scholar 

  • Grabar TB, Zou S, Shanmugam KT, Yomano LP, Ingram LO (2006) Methylglyoxal bypass identified as source of chiral contamination in l(+) and d(−)-lactate fermentations by recombinant Escherichia coli. Biotechnol Lett 28:1527–1535

    Article  PubMed  CAS  Google Scholar 

  • Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  PubMed  CAS  Google Scholar 

  • Ingram LO, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yomano LP, York SW (1998) Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng 58:204–214

    Article  PubMed  CAS  Google Scholar 

  • Keshav KF, Yomano LP, An H, Ingram LO (1990) Cloning of the Zymomonas mobilis structural gene encoding alcohol dehydrogenase I (adhA): sequencing comparison and expression in Escherichia coli. J Bacteriol 172:2491–2497

    PubMed  CAS  Google Scholar 

  • Mackenzie KF, Eddy CK, Ingram LO (1989) Modulation of alcohol dehydrogenase isoenzyme levels in Zymomonas mobilis by iron and zinc. J Bacteriol 171:1063–1067

    PubMed  CAS  Google Scholar 

  • Martinez A, York SW, Yomano LP, Pineda VL, Davis FC, Shelton JC, Ingram LO (1999) Biosynthetic burden and plasmid burden limit expression of chromosomally integrated heterologous genes (pdc, adhB) in Escherichia coli. Biotechnol Prog 15:891–897

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Morales F, Borges AC, Martinez A, Shanmugam KT, Ingram LO (1999) Chromosomal integration of heterologous DNA in Escherichia coli with precise removal of markers and replicons. J Bacteriol 181:7143–7148

    PubMed  CAS  Google Scholar 

  • Miller JH (1992) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57:893–900

    PubMed  CAS  Google Scholar 

  • Posfai G, Koob MD, Kirkpatrick HA, Blattner FR (1997) Versatile insertion plasmids for targeted genome manipulations in bacteria: isolation, deletion, and rescue of the pathogenicity island LEE of the Escherichia coli O157:H7 genome. J Bacteriol 179:4426–4428

    PubMed  CAS  Google Scholar 

  • Purvis JE, Yomano LP, Ingram LO (2005) Enhanced trehalose production improves growth of Escherichia coli under osmotic stress (salts and sugars). Appl Environ Microbiol 71:3761–3769

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Underwood SA, Buszko ML, Shanmugam KT, Ingram LO (2004) Lack of protective osmolytes limits final cell density and volumetric productivity of ethanologenic Escherichia coli KO11 during xylose fermentation. Appl Environ Microbiol 70:2734–2740

    Article  PubMed  CAS  Google Scholar 

  • Wanner BL, Kodaira R, Neidhardt FC (1977) Physiological regulation of a decontrolled lac operon. J Bacteriol 130:212–222

    PubMed  CAS  Google Scholar 

  • York SW, Ingram LO (1996) Ethanol production by recombinant Escherichia coli KO11 using crude yeast autolysate as a nutrient supplement. Biotechnol Lett 18:683–688

    Article  CAS  Google Scholar 

  • Zhang J, Greasham R (1999) Chemically defined media for commercial fermentations. Appl Microbiol Biotechnol 51:407–421

    Article  CAS  Google Scholar 

  • Zhou S, Yomano LP, Shanmugam KT, Ingram LO (2005) Fermentation of 10% sugar to d(−)-lactate by engineered Escherichia coli B. Biotechnol Lett 27:1891–1896

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Grabar TB, Shanmugam KT, Ingram LO (2006a) Betaine tripled the volumetric productivity of d(−)-lactate by Escherichia coli SZ132 in mineral salts medium. Biotechnol Lett 28:671–676

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Shanmugam KT, Yomano LP, Grabar TB, Ingram LO (2006b) Fermentation of 12% glucose (w/v) to 1.2 M lactate by Escherichia coli strain SZ194 using mineral salts medium. Biotechnol Lett 28:663–670

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the U.S. Department of Agriculture (01-35504-10669 and 00-52104-9704), the U.S. Department of Energy (FG02-96ER20222 and FG36-04GO14019), and by the Verenium Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. O. Ingram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yomano, L.P., York, S.W., Zhou, S. et al. Re-engineering Escherichia coli for ethanol production. Biotechnol Lett 30, 2097–2103 (2008). https://doi.org/10.1007/s10529-008-9821-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-008-9821-3

Keywords

Navigation