Skip to main content
Log in

Natural and engineered ribonucleases as potential cancer therapeutics

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

By reason of their cytotoxicity, ribonucleases (RNases) are potential anti-tumor drugs. Particularly members from the RNase A and RNase T1 superfamilies have shown promising results. Among these enzymes, Onconase, an RNase from the Northern Leopard frog, is furthest along in clinical trials. A general model for the mechanism of the cytotoxic action of RNases includes the interaction of the enzyme with the cellular membrane, internalization, translocation to the cytosol, and degradation of ribonucleic acid. The interplay of these processes as well as the role of the thermodynamic and proteolytic stability, the catalytic activity, and the capability of the RNase to evade the intracellular RNase inhibitor has not yet been fully elucidated. This paper discusses the various approaches to exploit RNases as cytotoxic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold U, Schulenburg C, Schmidt D, Ulbrich-Hofmann R (2006) Contribution of structural peculiarities of onconase to its high stability and folding kinetics. Biochemistry 45:3580–3587

    Article  PubMed  CAS  Google Scholar 

  • Benito A, Ribó M, Vilanova M (2005) On the track of antitumour ribonucleases. Mol Biosyst 1:294–302

    Article  PubMed  CAS  Google Scholar 

  • Boix E, Wu Y, Vasandani VM, Saxena SK, Ardelt W, Ladner J, Youle RJ (1996) Role of the N-terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity. J Mol Biol 257:992–1007

    Article  PubMed  CAS  Google Scholar 

  • Bosch M, Benito A, Ribó M, Puig T, Beaumelle B, Vilanova M (2004) A nuclear localization sequence endows human pancreatic ribonuclease with cytotoxic activity. Biochemistry 43:2167–2177

    Article  PubMed  CAS  Google Scholar 

  • Bracale A, Spalletti-Cernia D, Mastronicola M, Castaldi F, Mannucci R, Nitsch L, D’Alessio G (2002) Essential stations in the intracellular pathway of cytotoxic bovine seminal ribonuclease. Biochem J 362:553–560

    Article  PubMed  CAS  Google Scholar 

  • De Lamirande G (1961) Action of deoxyribonuclease and ribonuclease on the growth of Ehrlich ascites carcinoma in mice. Nature 192:52–54

    Article  Google Scholar 

  • De Lorenzo C, Arciello A, Cozzolino R, Palmer DB, Laccetti P, Piccoli R, D’Alessio G (2004) A fully human antitumor immunoRNase selective for ErbB-2-positive carcinomas. Cancer Res 64:4870–4874

    Article  PubMed  Google Scholar 

  • Di Donato A, Cafaro V, D’Alessio G (1994) Ribonuclease A can be transformed into a dimeric ribonuclease with antitumor activity. J Biol Chem 269:17394–17396

    PubMed  CAS  Google Scholar 

  • Dickson KA, Haigis MC, Raines RT (2005) Ribonuclease inhibitor: structure and function. Prog Nucleic Acid Res Mol Biol 80:349–374

    PubMed  CAS  Google Scholar 

  • Fuchs SM, Raines RT (2005) Polyarginine as a multifunctional fusion tag. Protein Sci 14:1538–1544

    Article  PubMed  CAS  Google Scholar 

  • Futami J, Kitazoe M, Maeda T, Nukui E, Sakaguchi M, Kosaka J, Miyazaki M, Kosaka M, Tada H, Seno M, Sasaki J, Huh NH, Namba M, Yamada H (2005) Intracellular delivery of proteins into mammalian living cells by polyethylenimine-cationization. J Biosci Bioeng 99:95–103

    Article  PubMed  CAS  Google Scholar 

  • Futami J, Maeda T, Kitazoe M, Nukui E, Tada H, Seno M, Kosaka M, Yamada H (2001) Preparation of potent cytotoxic ribonucleases by cationization: enhanced cellular uptake and decreased interaction with ribonuclease inhibitor by chemical modification of carboxyl groups. Biochemistry 40:7518–7524

    Article  PubMed  CAS  Google Scholar 

  • Gaur D, Swaminathan S, Batra JK (2001) Interaction of human pancreatic ribonuclease with human ribonuclease inhibitor. Generation of inhibitor-resistant cytotoxic variants. J Biol Chem 276:24978–24984

    Article  PubMed  CAS  Google Scholar 

  • Govindan SV, Griffiths GL, Hansen HJ, Horak ID, Goldenberg DM (2005) Cancer therapy with radiolabeled and drug/toxin-conjugated antibodies. Technol Cancer Res Treat 4:375–391

    PubMed  CAS  Google Scholar 

  • Haigis MC, Kurten EL, Raines RT (2003) Ribonuclease inhibitor as an intracellular sentry. Nucleic Acids Res 31:1024–1032

    Article  PubMed  CAS  Google Scholar 

  • Haigis MC, Raines RT (2003) Secretory ribonucleases are internalized by a dynamin-independent endocytic pathway. J Cell Sci 116:313–324

    Article  PubMed  CAS  Google Scholar 

  • Ilinskaya ON, Makarov AA (2005) Why ribonucleases induce tumor cell death. Mol Biol 39:1–10

    Article  CAS  Google Scholar 

  • Johannes L, Decaudin D (2005) Protein toxins: intracellular trafficking for targeted therapy. Gene Ther 12:1360–1368

    Article  PubMed  CAS  Google Scholar 

  • Kao RY, Jenkins JL, Olson KA, Key ME, Fett JW, Shapiro R (2002) A small-molecule inhibitor of the ribonucleolytic activity of human angiogenin that possesses antitumor activity. Proc Natl Acad Sci USA 99:10066–10071

    Article  PubMed  CAS  Google Scholar 

  • Klink TA, Raines RT (2000) Conformational stability is a determinant of ribonuclease A cytotoxicity. J Biol Chem 275:17463–17467

    Article  PubMed  CAS  Google Scholar 

  • Krauss J, Arndt MA, Vu BK, Newton DL, Seeber S, Rybak SM (2005) Efficient killing of CD22+ tumor cells by a humanized diabody-RNase fusion protein. Biochem Biophys Res Commun 331:595–602

    Article  PubMed  CAS  Google Scholar 

  • Ledoux L (1955) Action of ribonuclease on two solid tumours in vivo. Nature 176:36–37

    Article  PubMed  CAS  Google Scholar 

  • Lee JE, Raines RT (2003) Contribution of active-site residues to the function of onconase, a ribonuclease with antitumoral activity. Biochemistry 42:11443–11450

    Article  PubMed  CAS  Google Scholar 

  • Lee JE, Raines RT (2005) Cytotoxicity of bovine seminal ribonuclease: monomer versus dimer. Biochemistry 44:15760–15767

    Article  PubMed  CAS  Google Scholar 

  • Leich F, Köditz J, Ulbrich-Hofman R, Arnold U (2006) Tandemization endows bovine pancreatic ribonuclease with cytotoxic activity. J Mol Biol 358:1305–1313

    Article  PubMed  CAS  Google Scholar 

  • Leland PA, Raines RT (2001) Cancer chemotherapy––ribonucleases to the rescue. Chem Biol 8:405–413

    Article  PubMed  CAS  Google Scholar 

  • Leland PA, Schultz LW, Kim BM, Raines RT (1998) Ribonuclease A variants with potent cytotoxic activity. Proc Natl Acad Sci USA 95:10407–10412

    Article  PubMed  CAS  Google Scholar 

  • Leland PA, Staniszewski KE, Kim BM, Raines RT (2001) Endowing human pancreatic ribonuclease with toxicity for cancer cells. J Biol Chem 276:43095–43102

    Article  PubMed  CAS  Google Scholar 

  • Libonati M (2004) Biological actions of the oligomers of ribonuclease A. Cell Mol Life Sci 61:2431–2436

    Article  PubMed  CAS  Google Scholar 

  • Makarov AA, Ilinskaya ON (2003) Cytotoxic ribonucleases: molecular weapons and their targets. FEBS Lett 540:15–20

    Article  PubMed  CAS  Google Scholar 

  • Matousek J, Soucek J, Slavík T, Tománek M, Lee JE, Raines RT (2003) Comprehensive comparison of the cytotoxic activities of onconase and bovine seminal ribonuclease. Comp Biochem Physiol C Toxicol Pharmacol 136:343–356

    Article  PubMed  Google Scholar 

  • Mikulski SM, Ardelt W, Shogen K, Bernstein EH, Menduke H (1990) Striking increase of survival of mice bearing M109 Madison carcinoma treated with a novel protein from amphibian embryos. J Natl Cancer Inst 82:151–153

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 56:318–325

    Article  PubMed  CAS  Google Scholar 

  • Moenner M, Vosoghi M, Ryazantsev S, Glitz DG (1998) Ribonuclease inhibitor protein of human erythrocytes: characterization, loss of activity in response to oxidative stress, and association with Heinz bodies. Blood Cells Mol Dis 24:149–164

    Article  PubMed  CAS  Google Scholar 

  • Monti DM, D’Alessio G (2004) Cytosolic RNase inhibitor only affects RNases with intrinsic cytotoxicity. J Biol Chem 279:39195–39198

    Article  PubMed  CAS  Google Scholar 

  • Murthy BS, De Lorenzo C, Piccoli R, D’Alessio G, Sirdeshmukh R (1996) Effects of protein RNase inhibitor and substrate on the quaternary structures of bovine seminal RNase. Biochemistry 35:3880–3885

    Article  PubMed  CAS  Google Scholar 

  • Naddeo M, Vitagliano L, Russo A, Gotte G, D’Alessio G, Sorrentino S (2005) Interactions of the cytotoxic RNase A dimers with the cytosolic ribonuclease inhibitor. FEBS Lett 579:2663–2668

    Article  PubMed  CAS  Google Scholar 

  • Newton DL, Xue Y, Boque L, Wlodawer A, Kung HF, Rybak SM (1997) Expression and characterization of a cytotoxic human-frog chimeric ribonuclease: potential for cancer therapy. Protein Eng 10:463–470

    Article  PubMed  CAS  Google Scholar 

  • Olmo N, Turnay J, Gonzalez de Buitrago G, Lopez de Silanes I, Gavilanes JG, Lizarbe MA (2001) Cytotoxic mechanism of the ribotoxin alpha-sarcin. Induction of cell death via apoptosis. Eur J Biochem 268:2113–2123

    Article  PubMed  CAS  Google Scholar 

  • Pavlakis N, Vogelzang NJ (2006) Ranpirnase–an antitumour ribonuclease: its potential role in malignant mesothelioma. Expert Opin Biol Ther 6:391–399

    Article  PubMed  CAS  Google Scholar 

  • Pavlov N, Badet J (2001) [Angiogenin: involvement in angiogenesis and tumour growth]. Bull Cancer 88:725–732

    PubMed  CAS  Google Scholar 

  • Piccoli R, Di Gaetano S, De Lorenzo C, Grauso M, Monaco C, Spalletti-Cernia D, Laccetti P, Cinatl J, Matousek J, D’Alessio G (1999) A dimeric mutant of human pancreatic ribonuclease with selective cytotoxicity toward malignant cells. Proc Natl Acad Sci USA 96:7768–7773

    Article  PubMed  CAS  Google Scholar 

  • Pouckova P, Skvor J, Gotte G, Vottariello F, Slavik JT, Matousek J, Laurents DV, Libonati M, Soucek J (2006) Some biological actions of PEG-conjugated RNase A oligomers. Neoplasma 53:79–85

    PubMed  CAS  Google Scholar 

  • Rutkoski TJ, Kurten EL, Mitchell JC, Raines RT (2005) Disruption of shape-complementarity markers to create cytotoxic variants of ribonuclease A. J Mol Biol 354:41–54

    Article  PubMed  CAS  Google Scholar 

  • Rybak SM, Newton DL (1999) Natural and engineered cytotoxic ribonucleases: therapeutic potential. Exp Cell Res 253:325–335

    Article  PubMed  CAS  Google Scholar 

  • Shapiro R, Vallee BL (1987) Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities of angiogenin. Proc Natl Acad Sci USA 84:2238–2241

    Article  PubMed  CAS  Google Scholar 

  • Smith MR, Newton DL, Mikulski SM, Rybak SM (1999) Cell cycle-related differences in susceptibility of NIH/3T3 cells to ribonucleases. Exp Cell Res 247:220–232

    Article  PubMed  CAS  Google Scholar 

  • Tada H, Onizuka M, Muraki K, Masuzawa W, Futami J, Kosaka M, Seno M, Yamada H (2004) Insertional-fusion of basic fibroblast growth factor endowed ribonuclease 1 with enhanced cytotoxicity by steric blockade of inhibitor interaction. FEBS Lett 568:39–43

    Article  PubMed  CAS  Google Scholar 

  • Thrush GR, Lark LR, Clinchy BC, Vitetta ES (1996) Immunotoxins: an update. Annu Rev Immunol 14:49–71

    Article  PubMed  CAS  Google Scholar 

  • Youle RJ, D’Alessio G (1997) Antitumor RNases. In: D’Alessio G, Riordan JF (eds), Ribonucleases: structures and functions. Academic Press, New York pp. 491–514

    Google Scholar 

Download references

Acknowledgements

The Land Sachsen-Anhalt is gratefully acknowledged for supporting this work (3537C/0903T).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Arnold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, U., Ulbrich-Hofmann, R. Natural and engineered ribonucleases as potential cancer therapeutics. Biotechnol Lett 28, 1615–1622 (2006). https://doi.org/10.1007/s10529-006-9145-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-006-9145-0

Keywords

Navigation