Skip to main content
Log in

Persistent One-Way Walking in a Circular Arena in Drosophila melanogaster Canton-S Strain

  • Original Research
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

We describe persistent one-way walking of Drosophila melanogaster in a circular arena. Wild-type Canton-S adult flies walked in one direction, counter-clockwise or clockwise, for minutes, whereas white-eyed mutant \(w^{1118}\) changed directions frequently. Locomotion in the circular arena could be classified into four components: counter-clockwise walking, clockwise walking, nondirectional walking and pausing. Genetic analysis revealed that while wild-type genetic background was associated with reduced directional change and reduced numbers of one-way (including counter-clockwise and clockwise) and nondirectional walks, the white (\(w^+\)) locus promoted persistent one-way walking by increasing the maximal duration of one-way episodes. The promoting effect of \(w^+\) was further supported by the observations that (1) \(w^+\) duplicated to the Y chromosome, (2) four genomic copies of mini-white inserted on the autosomes, and (3) pan-neuronal overexpression of the White protein increased the maximal duration of one-way episodes, and that RNAi knockdown of \(w^+\) in the neurons decreased the maximal duration of one-way episodes. These results suggested a pleiotropic function of \(w^+\) in promoting persistent one-way walking in the circular arena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anaka M, MacDonald CD, Barkova E, Simon K, Rostom R, Godoy RA, Haigh AJ, Meinertzhagen IA, Lloyd V (2008) The white gene of Drosophila melanogaster encodes a protein with a role in courtship behavior. J Neurogenet 22:243–76

    Article  PubMed  Google Scholar 

  • Arkhipova I, Li J, Meselson M (1997) On the mode of gene-dosage compensation in Drosophila. Genetics 145:729–736

    PubMed  PubMed Central  Google Scholar 

  • Awasaki T, Lai SL, Ito K, Lee T (2008) Organization and postembryonic development of glial cells in the adult central brain of Drosophila. J Neurosci 28:13742–13753

    Article  PubMed  Google Scholar 

  • Bidaye SS, Machacek C, Wu Y, Dickson BJ (2014) Neuronal control of Drosophila walking direction. Science 344:97–101

    Article  PubMed  Google Scholar 

  • Borycz J, Borycz JA, Kubów A, Lloyd V, Meinertzhagen IA (2008) Drosophila ABC transporter mutants white, brown and scarlet have altered contents and distribution of biogenic amines in the brain. J Exp Biol 211:3454–66

    Article  PubMed  Google Scholar 

  • Bouhuys A (1964) Respiratory dead space. Section 3: respiration. Handb Physiol 1:699

    Google Scholar 

  • Calenge C (2006) The package “adehabitat” for the r software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519

    Article  Google Scholar 

  • Campbell JL, Nash HA (2001) Volatile general anesthetics reveal a neurobiological role for the white and brown genes of Drosophila melanogaster. J Neurobiol 49:339–49

    Article  PubMed  Google Scholar 

  • Carpenter FW (1905) The reactions of the pomace fly (Drosophila ampelophila Loew) to light, gravity, and mechanical stimulation. Am Nat 39:157–71

    Article  Google Scholar 

  • Cole BJ (1995) Fractal time in animal behaviour: the movement activity of Drosophila. Anim Behav 50:1317–1324

    Article  Google Scholar 

  • Cole WH (1922) Note on the relation between the photic stimulus and the rate of locomotion in Drosophila. Science 55:678–9

    Article  PubMed  Google Scholar 

  • Colomb J, Reiter L, Blaszkiewicz J, Wessnitzer J, Brembs B (2012) Open source tracking and analysis of adult Drosophila locomotion in buridan’s paradigm with and without visual targets. PLoS ONE 7:e42247

    Article  PubMed  PubMed Central  Google Scholar 

  • Dreesen T, Johnson D, Henikoff S (1988) The brown protein of Drosophila melanogaster is similar to the white protein and to components of active transport complexes. Mol Cell Biol 8:5206–5215

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans JM, Day JP, Cabrero P, Dow JA, Davies SA (2008) A new role for a classical gene: white transports cyclic GMP. J Exp Biol 211:890–9

    Article  PubMed  Google Scholar 

  • Ewing AW (1963) Attempts to select for spontaneous activity in Drosophila melanogaster. Anim Behav 11:369–78

    Article  Google Scholar 

  • Gomez-Marin A, Oron E, Gakamsky A, Valente D, Benjamini Y, Golani I (2016) Generative rules of Drosophila locomotor behavior as a candidate homology across phyla. Sci Rep 6:27555

    Article  PubMed  PubMed Central  Google Scholar 

  • Grima B, Chélot E, Xia R, Rouyer F (2004) Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431:869–873

    Article  PubMed  Google Scholar 

  • Hing AL, Carlson JR (1996) Male-male courtship behavior induced by ectopic expression of the Drosophila white gene: role of sensory function and age. J Neurobiol 30:454–64

    Article  PubMed  Google Scholar 

  • Kain JS, Stokes C, de Bivort BL (2012) Phototactic personality in fruit flies and its suppression by serotonin and white. Proc Natl Acad Sci USA 109:19834–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Davis RL, Roman G (2007) Exploratory activity in Drosophila requires the kurtz nonvisual arrestin. Genetics 175:1197–212

    Article  PubMed  PubMed Central  Google Scholar 

  • McEwen RS (1918) The reactions to light and to gravity in Drosophila and its mutants. J Exp Zool 25:49–106

    Article  Google Scholar 

  • Morgan TH (1910) Sex limited inheritance in Drosophila. Science 32:120–2

    Article  PubMed  Google Scholar 

  • O’Hare K, Murphy C, Levis R, Rubin GM (1984) DNA sequence of the white locus of Drosophila melanogaster. J Mol Biol 180:437–55

    Article  PubMed  Google Scholar 

  • Qian S, Pirrotta V (1995) Dosage compensation of the Drosophila white gene requires both the X chromosome environment and multiple intragenic elements. Genetics 139:733–44

    PubMed  PubMed Central  Google Scholar 

  • Qiu S, Xiao C, Robertson RM (2016) Pulsed light stimulation increases boundary preference and periodicity of episodic motor activity in Drosophila melanogaster. PLoS ONE 11:e0163976

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu S, Xiao C, Robertson RM (2017) Different age-dependent performance in Drosophila wild-type Canton-S and the white mutant w1118 flies. Comp Biochem Physiol A 206:17–23

    Article  Google Scholar 

  • Core Team R (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Sarkar D (2008) Lattice: multivariate data visualization with R. Springer, New York

    Book  Google Scholar 

  • Sitaraman D, Zars M, Laferriere H, Chen YC, Sable-Smith A, Kitamoto T, Rottinghaus GE, Zars T (2008) Serotonin is necessary for place memory in Drosophila. Proc Natl Acad Sci USA 105:5579–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Soibam B, Goldfeder RL, Manson-Bishop C, Gamblin R, Pletcher SD, Shah S, Gunaratne GH, Roman GW (2012) Modeling Drosophila positional preferences in open field arenas with directional persistence and wall attraction. PLoS ONE 7:e46570

    Article  PubMed  PubMed Central  Google Scholar 

  • Sullivan DT, Sullivan MC (1975) Transport defects as the physiological basis for eye color mutants of Drosophila melanogaster. Biochem Genet 13:603–13

    Article  PubMed  Google Scholar 

  • Tearle R, Belote J, McKeown M, Baker B, Howells A (1989) Cloning and characterization of the scarlet gene of Drosophila melanogaster. Genetics 122:595–606

    PubMed  PubMed Central  Google Scholar 

  • Vermehren-Schmaedick A, Ainsley JA, Johnson WA, Davies SA, Morton DB (2010) Behavioral responses to hypoxia in Drosophila larvae are mediated by atypical soluble guanylyl cyclases. Genetics 186:183–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao C, Qiu S, Robertson RM (2017) The white gene controls copulation success in Drosophila melanogaster. Sci Rep 7:7712

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao C, Robertson RM (2015) Locomotion induced by spatial restriction in adult Drosophila. PLoS ONE 10:e0135825

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao C, Robertson RM (2016) Timing of locomotor recovery from anoxia modulated by the white gene in Drosophila. Genetics 203:787–797

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao C, Robertson RM (2017) White-cGMP interaction promotes fast locomotor recovery from anoxia in adult Drosophila. PLoS ONE 12:e0168361

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Binari R, Zhou R, Perrimon N (2010) A genomewide rna interference screen for modifiers of aggregates formation by mutant huntingtin in Drosophila. Genetics 184:1165–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang SD, Odenwald WF (1995) Misexpression of the white (w) gene triggers male-male courtship in Drosophila. Proc Natl Acad Sci USA 92:5525–9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by Natural Sciences and Engineering Research Council of Canada (NSERC) Grant (RGPIN 40930-09) to R.M.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengfeng Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of human and animal rights

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Edited by Yong-Kyu Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, C., Qiu, S. & Robertson, R.M. Persistent One-Way Walking in a Circular Arena in Drosophila melanogaster Canton-S Strain. Behav Genet 48, 80–93 (2018). https://doi.org/10.1007/s10519-017-9881-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-017-9881-z

Keywords

Navigation