Skip to main content
Log in

Genetic and Environmental Contributions to Covariation Between DHEA and Testosterone in Adolescent Twins

  • Original Research
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Although several studies have shown that pubertal tempo and timing are shaped by genetic and environmental factors, few studies consider to what extent endocrine triggers of puberty are shaped by genetic and environmental factors. Doing so moves the field from examining correlated developmentally-sensitive biomarkers toward understanding what drives those associations. Two puberty related hormones, dehydroepiandrosterone and testosterone, were assayed from salivary samples in 118 MZ (62 % female), 111 same sex DZ (46 % female) and 103 opposite-sex DZ twin pairs, aged 12–16 years (M = 13.1, SD = 1.3). Pubertal status was assessed with a composite of mother- and self-reports. We used biometric models to estimate the genetic and environmental influences on the variance and covariance in testosterone and DHEA, with and without controlling for their association with puberty, and to test for sex differences. In males, the variance in testosterone and pubertal status was due to shared and non-shared environmental factors; variation in DHEA was due to genetic and non-shared environmental factors. In females, variance in testosterone was due to genetic and non-shared environmental factors; genetic, shared, and non-shared environmental factors contributed equally to variation in DHEA. In males, the testosterone-DHEA covariance was primarily due to shared environmental factors that overlapped with puberty as well as shared and non-shared environmental covariation specific to testosterone and DHEA. In females, the testosterone-DHEA covariance was due to genetic factors overlapping with pubertal status, and shared and non-shared environmental covariation specific to testosterone and DHEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. See Supplemental Table 1.

  2. See Supplemental Table 2.

References

  • Akamine Y, Kato K, Ibayashi H (1980) Studies on changes in the concentration of serum adrenal androgens in pubertal twins. Acta Endocrinol 93(3):356–364

    PubMed  Google Scholar 

  • Boker S, Neale M, Maes H, Wilde M, Spiegel M, Brick T et al (2011) OpenMx: an open source extended structural equation modeling framework. Psychometrika 76(2):306–317. doi:10.1007/s11336-010-9200-6

    Article  PubMed Central  PubMed  Google Scholar 

  • Booth A, Shelley G, Mazur A, Tharp G, Kittok R (1989) Testosterone, and winning and losing in human competition. Horm Behav 23(4):556–571

    Article  PubMed  Google Scholar 

  • Booth A, Johnson DR, Granger DA, Crouter AC, McHale S (2003) Testosterone and child and adolescent adjustment: the moderating role of parent-child relationships. Dev Psychol 39(1):85–98. doi:10.1037//0012-1649.39.1.85

    Article  PubMed  Google Scholar 

  • Bordini B, Rosenfield RL (2011) Normal pubertal development: part I: the endocrine basis of puberty. Pediatr Rev 32(6):223–229. doi:10.1542/pir.32-6-223

    Article  PubMed  Google Scholar 

  • Brooks-Gunn J (1988) Antecedents and consequences of variation in girls’ maturational timing. J Adolesc Health Care 9(5):365–373

    Article  PubMed  Google Scholar 

  • Ceballos N, Alabsi M (2006) Dehydroepiandrosterone sulfate, cortisol, mood state and smoking cessation: relationship to relapse status at 4-week follow-up. Pharmacol Biochem Behav 85(1):23–28. doi:10.1016/j.pbb.2006.06.021

    Article  PubMed  Google Scholar 

  • Compagnone NA, Mellon SH (1998) Dehydroepiandrosterone: a potential signaling molecule for neocortical organization during development. Proc Natl Acad Sci 95(8):4678–4683

    Article  PubMed Central  PubMed  Google Scholar 

  • Dick D, Rose R, Pulkkinen L, Kaprio J (2001) Measuring puberty and understanding its impact: a longitudinal study of adolescent twins. J Youth Adolesc 30(4):385–399

    Article  Google Scholar 

  • Dorn L, Susman E (2002) Puberty script: assessment of physical development in boys and girls. Cincinnati Children’s Hospital Medical Center, Cincinnati

    Google Scholar 

  • Dorn L, Dahl R, Woodward HR, Biro FM (2006) Defining the boundaries of early adolescence: a user’s guide to assessing pubertal status and pubertal timing in research with adolescents. Appl Dev Sci 101(1):30–56

    Article  Google Scholar 

  • Doughty D, Rodgers JL (2000) Behavior genetic modeling of menarche in US females. In: Rodgers JL, Rowe D, Miller WB (eds) Genetic influences on human fertility and sexuality. Kluwer Academic Publishers, New York, pp 169–181

    Chapter  Google Scholar 

  • Ellis BJ (2004) Timing of pubertal maturation in girls: an integrated life history approach. Psychol Bull 130(6):920–958. doi:10.1037/0033-2909.130.6.920

    Article  PubMed  Google Scholar 

  • Ellis BJ, Shirtcliff EA, Boyce WT, Deardorff J, Essex MJ (2011) Quality of early family relationships and the timing and tempo of puberty: effects depend on biological sensitivity to context. Dev Psychopathol 23(01):85–99. doi:10.1017/S0954579410000660

    Article  PubMed Central  PubMed  Google Scholar 

  • Finkelstein JW, D’Arcangelo MR, Susman EJ, Chinchilli VM, Kunselman SJ, Schwab J et al (1999) Self-assessment of physical sexual maturation in boys and girls with delayed puberty. J Adolesc Health 25(6):379–381

    Article  PubMed  Google Scholar 

  • Forget-Dubois N, Peruuse D, Turecki G, Billette J, Rouleau G, Malo M, Tremblay RE (2003) Diagnosing zygosity in infant twins: physical similarity, genotyping, and chorionicity. Twin Research 6:479–485

    Article  PubMed  Google Scholar 

  • Galsworthy M, Dionne G, Dale P, Plomin R (2000) Sex differences in early verbal and non-verbal cognitive development. Dev Sci 3:206–215

    Article  Google Scholar 

  • Ge X, Natsuaki M, Neiderhiser JM, Reiss D (2007) Genetic and environmental influences on pubertal timing: results from two national sibling studies. J Res Adolesc 17(4):767–788

    Article  Google Scholar 

  • Goel N, Bale TL (2008) Organizational and activational effects of testosterone on masculinization of female physiological and behavioral stress responses. Endocrinology 149(12):6399–6405. doi:10.1210/en.2008-0433

    Article  PubMed Central  PubMed  Google Scholar 

  • Goldsmith HH (1991) A zygosity questionnaire for young twins: a research note. Behav Genet 21(3):257–269. doi:10.1007/BF01065819

    Article  PubMed  Google Scholar 

  • Granger DA, Schwartz EB, Booth A, Curran M, Zakaria D (1999) Assessing dehydroepiandrosterone in saliva: a simple radioimmunoassay for use in studies of children, adolescents and adults. Psychoneuroendocrinology 24(5):567–579. doi:10.1016/S0306-4530(99)00013-X

    Article  PubMed  Google Scholar 

  • Granger DA, Shirtcliff EA, Zahn-Waxler C, Usher B, Klimes-Dougan B, Hastings P (2003) Salivary testosterone diurnal variation and psychopathology in adolescent males and females: individual differences and developmental effects. Dev Psychopathol 15(02):431–439. doi:10.1017/S0954579403000233

    PubMed  Google Scholar 

  • Granger DA, Shirtcliff EA, Booth A, Kivlighan KT, Schwartz EB (2004) The “trouble” with salivary testosterone. Psychoneuroendocrinology 29(10):1229–1240

    Article  PubMed  Google Scholar 

  • Grumbach MM (2002) The neuroendocrinology of human puberty revisited. Horm Res 57(Suppl 2):2–14

    Article  PubMed  Google Scholar 

  • Halpern CT, Udry JR, Campbell B, Suchindran C, Mason GA (1994) Testosterone and religiosity as predictors of sexual attitudes and activity among adolescent males: a biosocial model. J Biosoc Sci 26(2):217–234

    Article  PubMed  Google Scholar 

  • Halpern CT, Udry JR, Suchindran C (1997) Testosterone predicts initiation of coitus in adolescent females. Psychosom Med 59(2):161–171

    Article  PubMed  Google Scholar 

  • Harden KP, Kretsch N, Tackett JL, Tucker-Drob EM (2014) Genetic and environmental influences on testosterone in adolescents: evidence for sex differences: genetic influences on testosterone. Dev Psychobiol 9(4):558–565. doi:10.1002/dev.21207

    Google Scholar 

  • Harris J, Vernon PA, Boomsma DI (1998) The heritability of testosterone: a study of Dutch adolescent twins and their parents. Behav Genet 28(3):165–171

    Article  PubMed  Google Scholar 

  • Hermans EJ, Putman P, Baas JM, Koppeschaar HP, van Honk J (2006) A single administration of testosterone reduces fear-potentiated startle in humans. Biol Psychiatry 59(9):872–874. doi:10.1016/j.biopsych.2005.11.015

    Article  PubMed  Google Scholar 

  • Hibel LC, Granger DA, Cicchetti D, Rogosch F (2007) Salivary biomarker levels and diurnal variation: associations with medications prescribed to control children’s problem behavior. Child Dev 78(3):927–937

    Article  PubMed  Google Scholar 

  • Hoekstra RA, Bartels M, Boomsma DI (2006) Heritability of testosterone in 12 year old twins and its relation to pubertal development. Twin Res Hum Genet 9(4):558–565

    Article  PubMed  Google Scholar 

  • Huang B, Biro FM, Dorn LD (2009) Determination of relative timing of pubertal maturation through ordinal logistic modeling: evaluation of growth and timing parameters. J Adolesc Health 45(4):383–388. doi:10.1016/j.jadohealth.2009.02.013

    Article  PubMed Central  PubMed  Google Scholar 

  • Ibanez L, Ferrer A, Marcos MV, Hierro FR, de Zegher F (2000) Early puberty: rapid progression and reduced final height in girls with low birth weight. Pediatrics 106(5):e72

    Article  PubMed  Google Scholar 

  • Jaffee SR, Price TS (2007) Gene–environment correlations: a review of the evidence and implications for prevention of mental illness. Mol Psychiatry. doi:10.1038/sj.mp.4001950

    PubMed Central  PubMed  Google Scholar 

  • Johnson MM, Dismukes AR, Fleury E, Shirtcliff EA (2014) Psychopathy’s influence on the coupling between hypothalamic-pituitary-adrenal and -gonadal axes among incarcerated adolescents. Dev Psychobiol 56(3):448–458

    Article  PubMed  Google Scholar 

  • Kaprio J, Rimpelä A, Winter T, Viken RJ, Rimpelä M, Rose RJ (1995) Common genetic influences on BMI and age at menarche. Hum Biol 67:739–753

  • Kauffman AS, Navarro VM, Kim J, Clifton DK, Steiner RA (2009) Sex differences in the regulation of Kiss1/NKB neurons in juvenile mice: implications for the timing of puberty. AJP 297(5):E1212–E1221. doi:10.1152/ajpendo.00461.2009

    Google Scholar 

  • Koenis MMG, Brouwer RM, van Baal GCM, van Soelen ILC, Peper JS, van Leeuwen M et al (2013) Longitudinal study of hormonal and physical development in young twins. J Clin Endocrinol Metab 98(3):E518–E527. doi:10.1210/jc.2012-3361

    Article  PubMed  Google Scholar 

  • Kuijper EAM, Lambalk CB, Boomsma DI, van der Sluis S, Blankenstein MA, de Geus EJC, Posthuma D (2007) Heritability of reproductive hormones in adult male twins. Hum Reprod 22(8):2153–2159. doi:10.1093/humrep/dem145

    Article  PubMed  Google Scholar 

  • Lee M-S, Yang J-W, Ko Y-H, Han C, Kim S-H, Lee M-S et al (2008) Effects of methylphenidate and bupropion on DHEA-S and cortisol plasma levels in attention-deficit hyperactivity disorder. Child Psychiatry Hum Dev 39(2):201–209. doi:10.1007/s10578-007-0081-6

    Article  PubMed  Google Scholar 

  • Luke B, Witter FR, Abbey H, Feng T, Namnoum AB, Paige DM, Johnson TR (1991) Gestational age-specific birthweights of twins versus singletons. Acta Genet Med Gemellol 40(1):69–76

    PubMed  Google Scholar 

  • Malina R, Ryan RC, Bonci CM (1994) Age at menarche in athletes and their mothers and sisters. Ann Hum Biol 21:417–422

    Article  PubMed  Google Scholar 

  • Marceau K, Dorn LD, Susman EJ (2012) Stress and puberty-related hormone reactivity, negative emotionality, and parent–adolescent relationships. Psychoneuroendocrinology 37(8):1286–1298. doi:10.1016/j.psyneuen.2012.01.001

    Article  PubMed  Google Scholar 

  • Marceau K, Ruttle PL, Shirtcliff EA, Hastings PD, Klimes-Dougan B, Zahn-Waxler C (2013) Within-person coupling of changes in cortisol, testosterone, and DHEA across the day in adolescents: coupling of diurnal hormone changes. Dev Psychobiol. doi:10.1002/dev.21173

    PubMed Central  PubMed  Google Scholar 

  • Marceau K, Shirtcliff EA, Hastings PD, Klimes-Dougan B, Zahn-Waxler C, Dorn LD, Susman EJ (2014) Within-adolescent coupled changes in cortisol with DHEA and testosterone in response to three stressors during adolescence. Psychoneuroendocrinology 41:33–45. doi:10.1016/j.psyneuen.2013.12.002

    Article  PubMed Central  PubMed  Google Scholar 

  • Matchock RL, Dorn LD, Susman EJ (2007) Diurnal and seasonal cortisol, Testosterone, and DHEA rhythms in boys and girls during puberty. Chronobiol Int 24(5):969–990. doi:10.1080/07420520701649471

    Article  PubMed  Google Scholar 

  • Meaney MJ, McEwen BS (1986) Testosterone implants into the amygdala during the neonatal period masculinize the social play of juvenile female rats. Brain Res 398(2):324–328

    Article  PubMed  Google Scholar 

  • Meikle AW, Stringham JD, Bishop D, West D (1986) Quantitating genetic and nongenetic factors influencing androgen production and learning rates in men. J Clin Endocrinol Metab 67(1):104–109

    Article  Google Scholar 

  • Meyer JM, Eaves LJ, Heath AC, Martin NG (1991) Estimating genetic influences on the age-at-menarche. Am J Med Genet 39:148–154

    Article  PubMed  Google Scholar 

  • Mustanski BS, Viken RJ, Kaprio J, Pulkkinen L, Rose RJ (2004) Genetic and environmental influences on pubertal development: longitudinal data from Finnish twins at ages 11 and 14. Dev Psychol 40(6):1188–1198

    Article  PubMed  Google Scholar 

  • Neale M, Cardon L (1992) Methodology for genetic studies of twins and families. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Op de Macks ZA, Moor BG, Overgaauw S, Güroğlu B, Dahl RE, Crone EA (2011) Testosterone levels correspond with increased ventral striatum activation in response to monetary rewards in adolescents. Dev Cogn Neurosci 1(4):506–516. doi:10.1016/j.dcn.2011.06.003

    Article  PubMed  Google Scholar 

  • OpenMx (2012) (Version 1.3.2). Retrieved from http://openmx.psyc.virginia.edu. Accessed 2/4/2013

  • Parker LN (1991) Adrenarche. Endocrinol Metab Clin North Am 20:71–83

    PubMed  Google Scholar 

  • Petersen AC, Crockett L, Richards M, Boxer A (1988) A self-report measure of pubertal status: reliability, validity, and initial norms. J Youth Adolesc 17(2):117–133. doi:10.1007/BF01537962

    Article  PubMed  Google Scholar 

  • Purcell S (2002) Variance components models for gene-environment interaction in twin analysis. Twin Res 5(6):554–571. doi:10.1375/136905202762342026

    Article  PubMed  Google Scholar 

  • Rathouz PJ, Van Hulle CA, Rodgers JL, Waldman ID, Lahey BB (2008) Specification, testing, and interpretation of gene-by-measured-environment interaction models in the presence of gene–environment correlation. Behav Genet 38(3):301–315. doi:10.1007/s10519-008-9193-4

    Article  PubMed Central  PubMed  Google Scholar 

  • Rejeski WJ, Gagne M, Parker PE, Koritnik DR (1989) Acute stress reactivity from contested dominance in dominant and submissive males. Behav Med (Washington, D.C.) 15(3):118–124. doi:10.1080/08964289.1989.9934574

    Article  Google Scholar 

  • Rice T, Sprecher DL, Borecki IB, Mitchell LE, Laskarzewski PM, Rao DC (1993) Cincinnati myocardial infarction and hormone family study: family resemblance for testosterone in random and MI families. Am J Med Genet 47(4):542–549. doi:10.1002/ajmg.1320470421

    Article  PubMed  Google Scholar 

  • Rutter M, Redshaw J (1991) Annotation: growing up as a twin: twin-singleton differences in psychological development. J Child Psychol Psychiatry 32(6):885–895

    Article  PubMed  Google Scholar 

  • Ruttle PL, Shirtcliff EA, Armstrong JM, Klein MH, Essex MJ (2013) Neuroendocrine coupling across adolescence and the longitudinal influence of early life stress: Neuroendocrine Coupling. Dev Psychobiol. doi:10.1002/dev.21138

    PubMed Central  Google Scholar 

  • Saenger P, Dimartino-Nardi J (2001) Premature adrenarche. J Endocrinol Invest 24(9):724–733

    Article  PubMed  Google Scholar 

  • Schmidt NL, Van Hulle CA, Brooker RJ, Meyer LR, Lemery-Chalfant K, Goldsmith HH (2012) Wisconsin twin research: early development, childhood psychopathology, autism, and sensory over-responsivity. Twin Res Hum Genet 16(01):376–384. doi:10.1017/thg.2012.105

    Article  PubMed Central  PubMed  Google Scholar 

  • Schulz KM, Molenda-Figueira HA, Sisk CL (2009) Back to the future: the organizational–activational hypothesis adapted to puberty and adolescence. Horm Behav 55(5):597–604. doi:10.1016/j.yhbeh.2009.03.010

    Article  PubMed Central  PubMed  Google Scholar 

  • Shirtcliff EA (2005) Neuroendocrine and neural contributions to pubertal development, normative adolescent development and affect-related behavior problems. Paper presented at the Workshop on the Science of Adolescence Health and Development, National Academy of Science

  • Shirtcliff EA, Ruttle P (2010) Immunological and nueroendocrine dysregulation following early deprivation and stress. In: Brisch KH (ed) Attachment and early disorders of development. Kletta-Cotta, Stuttgart

    Google Scholar 

  • Shirtcliff EA, Dahl R, Pollak SD (2009) Pubertal development: correspondence between hormonal and physical development. Child Dev 80(2):327–337

    Article  PubMed Central  PubMed  Google Scholar 

  • Sklar CA, Kaplan SL, Grumbach MM (1980) Evidence for dissociation between adrenarche and gonadarche: studies in patients with idiopathic precocious puberty, gonadal dysgenesis, isolated gonadotropin deficiency, and constitutionally delayed growth and adolescence. J Clin Endocrinol Metab 51(3):548–556. doi:10.1210/jcem-51-3-548

    Article  PubMed  Google Scholar 

  • Slap GB, Khalid N, Paikoff RL, Brooks-Gunn J, Warren MP (1994) Evolving self-image, pubertal manifestations, and pubertal hormones: preliminary findings in young adolescent girls. J Adolesc Health 15(4):327–335. doi:10.1016/1054-139X(94)90606-8

    Article  PubMed  Google Scholar 

  • Spellacy W, Handler A, Ferre CF (1990) A case-control study of 1,253 twin pregnancies from a 1982-1987 perinatal data base. Obstet Gynecol 75(2):168–171

    PubMed  Google Scholar 

  • Terasawa E (1994) Steroid modulation of pulsatile LHRH release in the rhesus monkey. Horm Behav 28(4):406–416. doi:10.1006/hbeh.1994.1037

    Article  PubMed  Google Scholar 

  • Terasawa E (1995) Control of luteinizing hormone-releasing hormone pulse generation in nonhuman primates. Cell Mol Neurobiol 15(1):141–164. doi:10.1007/BF02069563

    Article  PubMed  Google Scholar 

  • Treloar SA, Martin N (1990) Age at menarche as a fitness trait: non-additive genetic variance detected in a large twin sample. Am J Hum Genet 47:137–148

    PubMed Central  PubMed  Google Scholar 

  • Van den Akker OB, Stein GS, Neale MC, Murray RM (1987) Interview guide for the Hamilton Depression Rating Scale, Seasonal genetic and environmental variation in menstrual cycle: histories of Affective Disorder version (SIGH-SAD). Acta Genet Med Gemellol (Roma) 36:541–548

    Google Scholar 

  • Van den Berg SM, Boomsma DI (2007) The familial clustering of age at menarche in extended twin families. Behav Genet 37(5):661–667. doi:10.1007/s10519-007-9161-4

    Article  PubMed  Google Scholar 

  • Van den Berg SM, Setiawan A, Bartels M, Polderman TJC, van der Vaart AW, Boomsma DI (2006) Individual differences in puberty onset in girls: bayesian estimation of heritabilities and genetic correlations. Behav Genet 36(2):261–270. doi:10.1007/s10519-005-9022-y

    Article  PubMed  Google Scholar 

  • Van den Oord EJCG, Koot HM, Boomsma DI, Verhulst FC, Orlebeke JF (1995) A twin-singleton comparison of problem behavior in 2-3-year-olds. J Child Psychol Psychiatry 36(3):449–458. doi:10.1111/j.1469-7610.1995.tb01302.x

    Article  PubMed  Google Scholar 

  • Van Niekerk JK, Huppert FA, Herbert J (2001) Salivary cortisol and DHEA: association with measures of cognition and well-being in normal older men, and effects of three months of DHEA supplementation. Psychoneuroendocrinology 26(6):591–612. doi:10.1016/S0306-4530(01)00014-2

    Article  PubMed  Google Scholar 

  • Van Weissenbruch MM, Delemarre-van de Waal HA (2006) Early influences on the tempo of puberty. Horm Res 65(3):105–111. doi:10.1159/000091514

    Article  PubMed  Google Scholar 

  • Wehkalampi K, Hovi P, Dunkel L, Strang-Karlsson S, Jarvenpaa AL, Eriksson JG, Kajantie E (2011) Advanced pubertal growth spurt in subjects born preterm: the Helsinkin study of very low birth weight adults. Clin Endocrinol Metab 96(2):525–533

    Article  Google Scholar 

  • Wirth MM, Schultheiss OC (2007) Basal testosterone moderates responses to anger faces in humans. Physiol Behav 90(2–3):496–505. doi:10.1016/j.physbeh.2006.10.016

    Article  PubMed  Google Scholar 

  • Wolf OT, Kirschbaum C (1999) Action of dehydroepiandrosterone and its sulfate in the central nervous system: effects on cognition and emotion in animals and humans. Brain Res Rev 30(3):264–288

    Article  PubMed  Google Scholar 

  • Yen SS, Laughlin GA (1998) Aging and the adrenal cortex. Exp Gerontol 33(7–8):897–910. doi:10.1016/S0531-5565(98)00046-1

    Article  PubMed  Google Scholar 

  • Zilioli S, Watson NV (2014) Testosterone across successive competitions: evidence for a “winner effect” in humans? Psychoneuroendocrinology 47:1–9. doi:10.1016/j.psyneuen.2014.05.001

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Mental Health (R01-MH059785), the Wisconsin Center for Affective Science (P50-MH069315), a Conte Neuroscience Center (P50-MH084051). Infrastructure support was provided by the Waisman Center via a Core Grant from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (P30 HD003352). Salary support was provided by a Career Development Award for Shirtcliff (K01 MH077687). The writing of this manuscript was partially supported by National Institute of Mental Health (T32 MH018931). We owe special gratitude to Wisconsin twins and their families for their research participation.

Conflict of Interest

Carol A. Van Hulle, Mollie N. Moore, Elizabeth A. Shirtcliff, Kathryn Lemery-Chalfant, H. Hill Goldsmith declare no potential conflict of interest with respect to the research, authorship, or publication of this article.

Human and Animal Rights and Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national). Informed consent was obtained for all participants in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Van Hulle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Hulle, C.A., Moore, M.N., Shirtcliff, E.A. et al. Genetic and Environmental Contributions to Covariation Between DHEA and Testosterone in Adolescent Twins. Behav Genet 45, 324–340 (2015). https://doi.org/10.1007/s10519-015-9709-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-015-9709-7

Keywords

Navigation