Skip to main content
Log in

QTL Analysis of Behavior in Nine-Spined Sticklebacks (Pungitius pungitius)

  • Original Research
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

The genetic architecture of behavioral traits is yet relatively poorly understood in most non-model organisms. Using an F2-intercross (n = 283 offspring) between behaviorally divergent nine-spined stickleback (Pungitius pungitius) populations, we tested for and explored the genetic basis of different behavioral traits with the aid of quantitative trait locus (QTL) analyses based on 226 microsatellite markers. The behaviors were analyzed both separately (viz. feeding activity, risk-taking and exploration) and combined in order to map composite behavioral type. Two significant QTL—explaining on average 6 % of the phenotypic variance—were detected for composite behavioral type on the experiment-wide level, located on linkage groups 3 and 8. In addition, several suggestive QTL located on six other linkage groups were detected on the chromosome-wide level. Apart from providing evidence for the genetic basis of behavioral variation, the results provide a good starting point for finer-scale analyses of genetic factors influencing behavioral variation in the nine-spined stickleback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ab Ghani NI, Herczeg G, Merilä J (2012) Body size divergence in nine-spined sticklebacks: disentangling additive genetic and maternal effects. Biol J Linn Soc 107:521–528

    Article  Google Scholar 

  • Ab Ghani NI, Herczeg G, Leinonen T, Merilä J (2013) Evidence for genetic differentiation in timing of maturation among nine-spined stickleback populations. J Evol Biol 26:775–782

    Article  Google Scholar 

  • Beavis WD (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. In: Proceedings of the Forty-Ninth Annual Corn, Sorghum Industry Research Conference. pp. 250–266

  • Beavis WD (1998) QTL analyses: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, New York, pp 145–162

    Google Scholar 

  • Bell AM (2007) Future directions in behavioural syndromes research. Proc R Soc Lond B 274:755–761

    Article  Google Scholar 

  • Bell AM, Backström T, Huntingford FA, Pottinger TG, Winberg S (2007) Variable neuroendocrine responses to ecologically-relevant challenges in sticklebacks. Physiol Behav 91:15–25

    Article  PubMed  Google Scholar 

  • Bell AM, Hankison SJ, Laskowski KL (2009) The repeatability of behaviour: a meta-analysis. Anim Behav 77:771–783

    Article  Google Scholar 

  • Berger M, Gray JA, Roth BL (2009) The expanded biology of serotonin. Annu Rev Med 60:355–366

    Article  PubMed  Google Scholar 

  • Blanchet S, Bernatchez L, Dodson JJ (2009) Does interspecific competition influence relationships between heterozygosity and fitness-related behaviors in juvenile Atlantic salmon (Salmo salar)? Behav Ecol Sociobiol 63:605–615

    Article  Google Scholar 

  • Boake CRB (1989) Repeatability: its role in evolutionary studies of mating behavior. Evol Ecol 3:173–182

    Article  Google Scholar 

  • Boake CRB, Arnold SJ, Breden F, Meffert LM, Ritchie MG, Taylor BJ, Wolf JB, Moore AJ (2002) Genetic tools for studying adaptation and the evolution of behavior. Am Nat 160:S143–S159

    Article  PubMed  Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Bouchard TJ, Loehlin JC (2001) Genes, evolution, and personality. Behav Genet 31:243–273

    Article  PubMed  Google Scholar 

  • Burmeister SS, Kailasanath V, Fernald RD (2007) Social dominance regulates androgen and estrogen receptor gene expression. Horm Behav 51:164–170

    Article  PubMed Central  PubMed  Google Scholar 

  • Chan YF, Marks ME, Jones FC et al (2010) Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327:302–305

    Article  PubMed Central  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  Google Scholar 

  • Cole NJ, Tanaka M, Prescott A, Tickle CA (2003) Expression of limb initiation genes and clues to the basis of morphological diversification in threespine sticklebacks. Curr Biol 13:R951–R952

    Article  PubMed  Google Scholar 

  • Colosimo PF, Peichel CL, Nereng K, Blackman BK, Shapiro MD, Schluter D, Kingsley DM (2004) The genetic architecture of parallel armor plate reduction in threespine sticklebacks. PLoS Biol 2:635–641

    Article  Google Scholar 

  • Coyle SM, Huntingford FA, Peichel CL (2007) Parallel evolution of Pitx1 underlies pelvic reduction in Scottish threespine stickleback (Gasterosteus aculeatus). J Hered 98:581–586

    Article  PubMed  Google Scholar 

  • Cresko WA, Amores A, Wilson C, Murphy J, Currey M, Phillips P, Bell MA, Kimmel CB, Postlethwait JH (2004) Parallel genetic basis for repeated evolution of armor loss in Alaskan threespine stickleback populations. Proc Natl Acad Sci USA 101:6050–6055

    Article  PubMed  Google Scholar 

  • David M, Auclair Y, Cézilly F (2011) Personality predicts social dominance in female zebra finches, Taeniopygia guttata, in a feeding context. Anim Behav 81:219–224

    Article  Google Scholar 

  • Dingemanse NJ, Both C, Drent PJ, van Oers K, van Noordwijk AJ (2002) Repeatability and heritability of exploratory behaviour in great tits from the wild. Anim Behav 64:929–938

    Article  Google Scholar 

  • Dingemanse NJ, Van der Plas F, Wright J, Réale D, Schrama M, Roff DA, Van der Zee E, Barber I (2009) Individual experience and evolutionary history of predation affect expression of heritable variation in fish personality and morphology. Proc R Soc Lond B 276:1285–1293

    Article  Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    PubMed  Google Scholar 

  • Ducci F, Enoch M-A, Yuan Q, Shen PH, White KV, Hodgkinson C, Albaugh B, Virkkunen M, Goldman D (2009) HTR3B is associated with alcoholism with antisocial behavior and alpha EEG power—an intermediate phenotype for alcoholism and co-morbid behaviors. Alcohol 43:73–84

    Article  PubMed Central  PubMed  Google Scholar 

  • Ellegren H, Sheldon BC (2008) Genetic basis of fitness differences in natural populations. Nature 452:169–175

    Article  PubMed  Google Scholar 

  • Elphinstone MS, Hinten GN, Anderson MJ, Nock CJ (2003) An inexpensive and high-throughput procedure to extract and purify total genomic DNA for population studies. Mol Ecol Notes 3:317–320

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, New York

    Google Scholar 

  • Fidler AE, van Oers K, Drent PJ, Kuhn S, Mueller JC, Kempenaers B (2007) Drd4 gene polymorphisms are associated with personality variation in a passerine bird. Proc R Soc Lond B 274:1685–1691

    Article  Google Scholar 

  • Fitzpatrick MJ, Ben-Shahar Y, Smid HM, Vet LEM, Robinson GE, Sokolowski MB (2005) Candidate genes for behavioural ecology. Trends Ecol Evol 20:96–104

    Article  PubMed  Google Scholar 

  • Flint J, Corley R (1996) Do animal models have a place in the genetic analysis of quantitative human behavioural traits? J Mol Med 74:515–521

    Article  PubMed  Google Scholar 

  • Flint J, Munafo M (2013) Herit-ability. Science 340:1416–1417

    Article  PubMed  Google Scholar 

  • Green P, Falls K, Crooks S (1990) Documentation for CRI-MAP (version 2.4). Washington University School of Medicine, St. Louis, Missouri. http://linkage.rockefeller.edu/soft/crimap/

  • Heckel G, Zbinden M, Mazzi D, Kohler A, Reckeweg G, Bakker TCM, Largiadér CR (2002) Microsatellite markers for the three-spined stickleback (Gasterosteus aculeatus L.) and their applicability in a freshwater and an anadromous population. Conserv Genet 3:79–81

    Article  Google Scholar 

  • Henderson ND, Turri MG, DeFries JC, Flint J (2004) QTL analysis of multiple behavioral measures of anxiety in mice. Behav Genet 34:267–293

    Article  PubMed  Google Scholar 

  • Herczeg G, Välimäki K (2011) Intraspecific variation in behaviour: effects of evolutionary history, ontogenetic experience and sex. J Evol Biol 24:2434–2444

    Article  PubMed  Google Scholar 

  • Herczeg G, Gonda A, Merilä J (2009a) Evolution of gigantism in nine-spined sticklebacks. Evolution 63:3190–3200

    Article  PubMed  Google Scholar 

  • Herczeg G, Gonda A, Merilä J (2009b) Predation mediated population divergence in complex behaviour of nine-spined stickleback (Pungitius pungitius). J Evol Biol 22:544–552

    Article  PubMed  Google Scholar 

  • Herczeg G, Turtiainen M, Merilä J (2010) Morphological divergence of North-European nine-spined sticklebacks (Pungitius pungitius): signatures of parallel evolution. Biol J Linn Soc 101:403–416

    Article  Google Scholar 

  • Herczeg G, Gonda A, Kuparinen A, Merilä J (2012) Contrasting growth strategies of pond versus marine populations of nine-spined stickleback (Pungitius pungitius): a combined effect of predation and competition? Evol Ecol 26:109–122

    Article  Google Scholar 

  • Herczeg G, Ab Ghani NI, Merilä J (2013) Evolution of stickleback feeding behaviour: genetics of population divergence at different ontogenetic stages. J Evol Biol 26:955–962

    Article  PubMed  Google Scholar 

  • Hettinger JA, Liu X, Schwartz CE, Michaelis RC, Holden JJA (2008) A DRD1 haplotype is associated with risk for autism spectrum disorders in male-only affected sib-pair families. Am J Med Genet Part B 147B:628–636

    Article  PubMed  Google Scholar 

  • Hoffmann AA (2002) Laboratory and field heritabilites: some lessons from Drosophila. In: Mousseau TA, Sinervo B, Endler JA (eds) Adaptive genetic variation in the wild. Oxford University Press, Oxford, pp 200–218

    Google Scholar 

  • Inoue-Murayama M (2009) Genetic polymorphism as a background of animal behavior. Anim Sci J 80:113–120

    Article  PubMed  Google Scholar 

  • Johnston SE, Beraldi D, McRae AF, Pemberton JM, Slate J (2010) Horn type and horn length genes map to the same chromosomal region in soay sheep. Heredity 104:196–205

    Article  PubMed  Google Scholar 

  • Kukekova AV, Trut LN, Chase K, Kharlamova AV, Johnson JL, Temnykh SV, Oskina IN, Gulevich RG, Vladimirova AV, Klebanov S, Shepeleva DV, Shikhevich SG, Acland GM, Lark KG (2011) Mapping loci for fox domestication: deconstruction/reconstruction of a behavioral phenotype. Behav Genet 41:593–606

    Article  PubMed Central  PubMed  Google Scholar 

  • Laine VN, Herczeg G, Shikano T, Primmer CR (2012a) Heterozygosity-behaviour correlations in nine-spined stickleback (Pungitius pungitius) populations: contrasting effects at random and functional loci. Mol Ecol 21:4872–4884

    Article  PubMed  Google Scholar 

  • Laine VN, Primmer CR, Herczeg G, Merilä J, Shikano T (2012b) Isolation and characterization of 13 new nine-spined stickleback, Pungitius pungitius, microsatellites located nearby candidate genes for behavioural variation. Ann Zool Fenn 49:123–128

    Article  Google Scholar 

  • Laine VN, Shikano T, Herczeg G, Vilkki J, Merilä J (2013) Quantitative trait loci for growth and body size in the nine-spined stickleback Pungitius pungitius L. Mol Ecol. doi:10.1111/mec.12526

  • Lamonerie T, Tremblay JJ, Lanctôt C, Therrien M, Gauthier Y, Drouin J (1996) Ptx1, a bicoid-related homeo box transcription factor involved in transcription of the pro-opiomelanocortin gene. Genes Dev 10:1284–1295

    Article  PubMed  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  PubMed  Google Scholar 

  • Largiadèr CR, Fries V, Kobler B, Bakker TCM (1999) Isolation and characterization of microsatellite loci from the three-spined stickleback (Gasterosteus aculeatus L.). Mol Ecol 8:342–344

    PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and Analysis of Quantitative Traits, Sinauer Associates

  • Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577

    Article  PubMed  Google Scholar 

  • Mäkinen HS, Cano JM, Merilä J (2008) Identifying footprints of directional and balancing selection in marine and freshwater three-spined stickleback (Gasterosteus aculeatus) populations. Mol Ecol 17:3565–3582

    Article  PubMed  Google Scholar 

  • Mather K, Jinks JL (1982) Biometrical genetics. The study of continuous variation. Chapman and Hall, London

    Book  Google Scholar 

  • Merilä J (2013) Nine-spined stickleback (Pungitius pungitius): an emerging model for evolutionary biology research. Ann N Y Acad Sci 1289:18–35

    Article  PubMed  Google Scholar 

  • Miller CT, Beleza S, Pollen AA, Schluter D, Kittles RA, Shriver MD, Kingsley DM (2007) cis-Regulatory changes in kit ligand expression and parallel evolution of pigmentation in sticklebacks and humans. Cell 131:1179–1189

    Article  PubMed Central  PubMed  Google Scholar 

  • Misener VL, Luca P, Azeke O, Crosbie J, Waldman I, Tannock R, Roberts W, Malone M, Schachar R, Ickowicz A, Kennedy JL, Barr CL (2004) Linkage of the dopamine receptor D1 gene to attention-deficit/hyperactivity disorder. Mol Psychiatry 9:500–509

    Article  PubMed  Google Scholar 

  • Mousseau TA, Roff DA (1987) Natural selection and the heritability of fitness components. Heredity 59:181–197

    Article  PubMed  Google Scholar 

  • Noblett KL, Coccaro EF (2005) Molecular genetics of personality. Curr Psychiatry Rep 7:73–80

    Article  PubMed  Google Scholar 

  • Peichel CL, Nereng K, Ohgi KA, Cole BLE, Colosimo PF, Buerkle CA, Schluter D, Kingsley DM (2001) The genetic architecture of divergence between threespine stickleback species. Nature 414:901–905

    Article  PubMed  Google Scholar 

  • Philippi A, Tores F, Carayol J, Rousseau F, Letexier M, Roschmann E, Lindenbaum P, Benajjou A, Fontaine K, Vazart C, Gesnouin P, Brooks P, Hager J (2007) Association of autism with polymorphisms in the paired-like homeodomain transcription factor 1 (PITX1) on chromosome 5q31: a candidate gene analysis. BMC Med Genet 8:74

    Article  PubMed Central  PubMed  Google Scholar 

  • Rebai A, Goffinet B, Mangin B (1995) Comparing power of different methods for QTL detection. Biometrics 51:87–99

    Article  PubMed  Google Scholar 

  • Reif A, Lesch K-P (2003) Toward a molecular architecture of personality. Behav Brain Res 139:1–20

    Article  PubMed  Google Scholar 

  • Roth B (1994) Multiple serotonin receptors: clinical and experimental aspects. Ann Clin Psychiatry 6:67–78

    Article  PubMed  Google Scholar 

  • Schütz KE, Kerje S, Jacobsson L, Forkman B, Carlborg O, Andersson L, Jensen P (2004) Major growth QTLs in fowl are related to fearful behavior: possible genetic links between fear responses and production traits in a red junglefowl x white leghorn intercross. Behav Genet 34:121–130

    Article  PubMed  Google Scholar 

  • Shapiro MD, Marks ME, Peichel CL, Blackman BK, Nereng KS, Jónsson B, Schluter D, Kingsley DM (2004) Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428:717–723

    Article  PubMed  Google Scholar 

  • Shapiro MD, Summers BR, Balabhadra S, Aldenhoven JT, Miller AL, Cunningham CB, Bell MA, Kingsley DM (2009) The genetic architecture of skeletal convergence and sex determination in ninespine sticklebacks. Curr Biol 19:1140–1145

    Article  PubMed Central  PubMed  Google Scholar 

  • Shikano T, Ramadevi J, Shimada Y, Merilä J (2010) Utility of sequenced genomes for microsatellite marker development in non-model organisms: a case study of functionally important genes in nine-spined sticklebacks (Pungitius pungitius). BMC Genomics 11:334

    Article  PubMed Central  PubMed  Google Scholar 

  • Shikano T, Natri HM, Shimada Y, Merilä J (2011) High degree of sex chromosome differentiation in stickleback fishes. BMC Genomics 12:474

    Article  PubMed Central  PubMed  Google Scholar 

  • Shikano T, Laine VN, Herczeg G, Vilkki J, Merilä J (2013) Genetic architecture of parallel pelvic reduction in ninespine sticklebacks. G3: Genes, Genomics. Genetics. 3:1833–1842

    Google Scholar 

  • Shimada Y, Shikano T, Kuparinen A, Gonda A, Leinonen T, Merilä J (2011a) Quantitative genetics of body size and timing of maturation in two nine-spined stickleback (Pungitius pungitius) populations. PLoS One 6:e28859

    Article  PubMed Central  PubMed  Google Scholar 

  • Shimada Y, Shikano T, Merilä J (2011b) A high incidence of selection on physiologically important genes in the three-spined stickleback, Gasterosteus aculeatus. Mol Biol Evol 28:181–193

    Article  PubMed  Google Scholar 

  • Slate J (2005) Quantitative trait locus mapping in natural populations: progress, caveats and future directions. Mol Ecol 14:363–379

    Article  PubMed  Google Scholar 

  • Slate J (2013) From beavis to beak colour: a simulation study to examine how much QTL mapping can reveal about the genetic architecture of quantitative traits. Evolution 67:1251–1262

    PubMed  Google Scholar 

  • Slate J, Pemberton JM, Visscher PM (1999) Power to detect QTL in a free-living polygynous population. Heredity 83:327–336

    Article  PubMed  Google Scholar 

  • Slate J, Gratten J, Beraldi D, Stapley J, Hale M, Pemberton JM (2009) Gene mapping in the wild with SNPs: guidelines and future directions. Genetica 136:97–107

    Article  PubMed  Google Scholar 

  • Sokolowski MB (2001) Drosophila: genetics meets behaviour. Nat Rev Genet 2:879–890

    Article  PubMed  Google Scholar 

  • Stinchcombe JR, Hoekstra HE (2008) Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity 100:158–170

    Article  PubMed  Google Scholar 

  • Takeuchi Y, Hashizume C, Arata S, Inoue-Murayama M, Maki T, Hart BL, Mori Y (2009) An approach to canine behavioural genetics employing guide dogs for the blind. Anim Genet 40:217–224

    Article  PubMed  Google Scholar 

  • Tarka M, Akesson M, Beraldi D, Hernández-Sánchez J, Hasselquist D, Bensch S, Hansson B (2010) A strong quantitative trait locus for wing length on chromosome 2 in a wild population of great reed warblers. Proc R Soc Lond B 277:2361–2369

    Article  Google Scholar 

  • Tiira K, Laurila A, Peuhkuri N, Piironen J, Ranta E, Primmer CR (2003) Aggressiveness is associated with genetic diversity in landlocked salmon (Salmo salar). Mol Ecol 12:2399–2407

    Article  PubMed  Google Scholar 

  • Tiira K, Laurila A, Enberg K et al (2006) Do dominants have higher heterozygosity? Social status and genetic variation in brown trout, Salmo trutta. Behav Ecol Sociobiol 59:657–665

    Article  Google Scholar 

  • Tschirren B, Bensch S (2010) Genetics of personalities: no simple answers for complex traits. Mol Ecol 19:624–626

    Article  PubMed  Google Scholar 

  • Våge J, Wade C, Biagi T, Fatjó J, Amat M, Lindblad-Toh K, Lingaas F (2010) Association of dopamine- and serotonin-related genes with canine aggression. Genes Brain Behav 9:372–378

    Article  PubMed  Google Scholar 

  • Välimäki K, Herczeg G (2012) Ontogenetic and evolutionary effects of predation and competition on nine-spined stickleback (Pungitius pungitius) body size. J Anim Ecol 81:859–867

    Article  PubMed  Google Scholar 

  • Välimäki K, Herczeg G, Merilä J (2012) Morphological anti-predator defences in the nine-spined sticklebacks: constitutive, induced or both? Biol J Linn Soc 107:854–866

    Article  Google Scholar 

  • Van Oers K, Mueller JC (2010) Evolutionary genomics of animal personality. Proc R Soc Lond B 365:3991–4000

    Google Scholar 

  • van Oers K, de Jong G, van Noordwijk A, Drent P (2005) Contribution of genetics to the study of animal personalities: a review of case studies. Behaviour 142:1185–1206

    Article  Google Scholar 

  • Vilhunen S, Tiira K, Laurila A, Hirvonen H (2008) The bold and the variable: fish with high heterozygosity act recklessly in the vicinity of predators. Ethology 114:7–15

    Article  Google Scholar 

  • Visscher PM, Goddard ME, Derks EM, Wray NR (2012) Evidence-based psychiatric genetics, AKA the false dichotomy between common and rare variant hypotheses. Mol Psychiatry 17:474–485

    Article  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  Google Scholar 

  • Weber JN, Peterson BK, Hoekstra HE (2013) Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice. Nature 493:402–405

    Article  PubMed  Google Scholar 

  • Weiss A, King JE, Figueredo AJ (2000) The heritability of personality factors in chimpanzees (Pan troglodytes). Behav Genet 30:213–221

    Article  PubMed  Google Scholar 

  • Winberg S, Nilsson A, Hylland P, Söderström V, Nilsson GE (1997) Serotonin as a regulator of hypothalamic-pituitary-interrenal activity in teleost fish. Neurosci Lett 230:113–116

    Article  PubMed  Google Scholar 

  • Wright D, Butlin RK, Carlborg O (2006a) Epistatic regulation of behavioural and morphological traits in the zebrafish (Danio rerio). Behav Genet 36:914–922

    Article  PubMed  Google Scholar 

  • Wright D, Nakamichi R, Krause J, Butlin RK (2006b) QTL analysis of behavioral and morphological differentiation between wild and laboratory zebrafish (Danio rerio). Behav Genet 36:271–284

    Article  PubMed  Google Scholar 

  • Xu S (2003) Theoretical basis of the Beavis effect. Genetics 165:2259–2268

    PubMed  Google Scholar 

  • Xu H, Shen X, Zhou M, Fang M, Zeng H, Nie Q, Zhang X (2010) The genetic effects of the dopamine D1 receptor gene on chicken egg production and broodiness traits. BMC Genet 11:17

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhou H, Deeb N, Evock-Clover CM, Ashwell CM, Lamont SJ (2006) Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. I. Growth and average daily gain. Poult Sci 85:1700–1711

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Abigel Gonda, Mirva Turtianen and Pirkko Siikamäki (the Oulanka Research Station; University of Oulu) for help in obtaining the fish, Kirsi Kähkönen for help in genotyping, Jacquelin De Faveri for comments that improved an earlier version of this manuscript and DJ de Koning for suggestions regarding treating of the trait data. Our research was supported by Academy of Finland (grant numbers 34728, 250435 and 265211to J.M. and 128716 to G.H.) and the Biological Interactions Graduate School (to V.N.L). G.H. was also supported by the Hungarian Scientific Research Fund (G.H. # OTKA-K 105517) and the János Bólyai Research Scholarship of the Hungarian Academy of Sciences. The experiments carried out in this study were conducted under license from the Finnish National Animal Experiment Board (license no. STH211A), and the fish from Kuusamo were obtained with license from Metsähallitus (permit given for G.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronika N. Laine.

Additional information

Edited by Stephen Maxson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laine, V.N., Herczeg, G., Shikano, T. et al. QTL Analysis of Behavior in Nine-Spined Sticklebacks (Pungitius pungitius). Behav Genet 44, 77–88 (2014). https://doi.org/10.1007/s10519-013-9624-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-013-9624-8

Keywords

Navigation