Skip to main content
Log in

The Genetic Architecture of Liver Enzyme Levels: GGT, ALT and AST

  • Original Research
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

High levels of liver enzymes GGT, ALT and AST are predictive of disease and all-cause mortality and can reflect liver injury, fatty liver and/or oxidative stress. Variation in GGT, ALT and AST levels is heritable. Moderation of the heritability of these liver enzymes by age and sex has not often been explored, and it is not clear to what extent non-additive genetic and shared environmental factors may play a role. To examine the genetic architecture of GGT, ALT and AST, plasma levels were assessed in a large sample of twins, their siblings, parents and spouses (N = 8,371; age range 18–90). For GGT and ALT, but not for AST, genetic structural equation modeling showed evidence for quantitative sex differences in the genetic architecture. There was no evidence for qualitative sex differences, i.e. the same genes were expressed in males and females. Both additive and non-additive genetic factors were important for GGT in females (total heritability h2 60 %) and AST in both sexes (total h2 43 %). The heritability of GGT in males and ALT for both sexes was due to additive effects only (GGT males 30 %; ALT males 40 %, females 22 %). Evidence emerged for shared environmental factors influencing GGT in the male offspring generation (variance explained 28 %). Thus, the same genes influence liver enzyme levels across sex and age, but their relative contribution to the variation in GGT and ALT differs in males and females and for GGT across age. Given adequate sample sizes these results suggest that genome-wide association studies may result in the detection of new susceptibility loci for liver enzyme levels when pooling results over sex and age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bathum L, Petersen HC, Rosholm JU, Hyltoft Petersen P, Vaupel J, Christensen K (2001) Evidence for a substantial genetic influence on biochemical liver function tests: results from a population-based Danish twin study. Clin Chem 47:81–87

    PubMed  Google Scholar 

  • Bentler PM, Bonett DG (1980) Significance tests and goodness of fit in the analysis of covariance structures. Psychol Bull 88:588–606

    Article  Google Scholar 

  • Brouwers MCGJ, Cantor RM, Kono N (2006) Heritability and genetic loci of fatty liver in familial combined hyperlipidemia. J Lipid Res 47:2799–2807

    Article  PubMed  Google Scholar 

  • Chambers JC, Zhang W, Sehmi J, Li X, Wass MN, Van der Harst P et al (2011) Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat Genet 43:1131–1138

    Article  PubMed  Google Scholar 

  • Conigrave KM, Davies P, Haber P, Whitfield JB (2003) Traditional markers of excessive alcohol use. Addiction 98:31–43

    Article  PubMed  Google Scholar 

  • Eagon PK (2010) Alcoholic liver injury: influence of gender and hormones. World J Gastroenterol 16:1377–1384

    Article  PubMed  Google Scholar 

  • Fraser A, Harris R, Sattar N, Ebrahim S, Davey Smith G, Lawlor DA (2009) Alanine aminotransferase, gamma-glutamyltransferase, and incident diabetes. Diabetes Care 32:741–750

    Article  PubMed  Google Scholar 

  • Herbeth B, Samara A, Ndiaye C, Marteau JB, Berrahmoune H, Siest G et al (2010) Metabolic syndrome-related composite factors over 5 years in the STANISLAS family study: genetic heritability and common environmental influences. Clin Chim Acta 411:833–839

    Article  PubMed  Google Scholar 

  • Honjo S, Kono S, Coleman MP, Shinchi K, Sakurai Y, Todoroki I et al (2001) Coffee consumption and serum aminotransferases in middle-aged Japanese men. J Clin Epidemiol 54:823–829

    Article  PubMed  Google Scholar 

  • Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, Daigo Y et al (2010) Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet 42:210–215

    Article  PubMed  Google Scholar 

  • Kazemi-Shirazi L, Endler G, Winkler S, Schickbauer T, Wagner O, Marsik C (2007) Gamma glutamyltransferase and long-term survival: is it just the liver? Clin Chem 53:940–946

    Article  PubMed  Google Scholar 

  • Keller MC, Medland SE, Duncan LE (2010) Are extended twin family designs worth the trouble? A comparison of the bias, precision, and accuracy of parameters estimated in four twin family models. Behav Genet 40:377–393

    Article  PubMed  Google Scholar 

  • Kim HC, Nam CM, Jee SH, Kan KH, Oh DK, Suh I (2004) Normal serum aminotransferase concentration and risk of mortality from liver diseases: prospective cohort study. BMJ 328:983

    Article  PubMed  Google Scholar 

  • Kollerits B, Coassin S, Kiechl S, Hunt SC, Paulweber B, Willeit J et al (2010) A common variant in the adiponutrin gene influences liver enzyme values. J Med Genet 47:116–119

    Article  PubMed  Google Scholar 

  • Lee DH, Blomhoff R, Jacobs DR (2004) Review: is serum gamma glutamyltransferase a marker of oxidative stress? Free Radic Res 38:535–539

    Article  PubMed  Google Scholar 

  • Lee TH, Kim W, Benson JT, Therneau TM, Melton LJ III (2008) Serum aminotransferase activity and mortality risk in a United States community. Hepatology 47:880–887

    Article  PubMed  Google Scholar 

  • Lin JP, O’Donnell CJ, Fox CS, Cupples LA (2009) Heritability of serum glutamyltransferase level: genetic analysis from the Framingham Offspring Study. Liver Int 29:776–777

    Article  PubMed  Google Scholar 

  • Loomba R, Rao F, Zhang L, Khandrika S, Ziegler MG, Brenner DA et al (2010) Genetic covariance between gamma-glutamyl transpeptidase and fatty liver risk factors: role of beta 2-adrenergic receptor genetic variation in twins. Gastroenterology 139:836–845

    Article  PubMed  Google Scholar 

  • Makkonen J, Pietiläinen KH, Rissanen A, Kaprio J, Yki-Järvinen H (2009) Genetic factors contribute to variation in serum alanine aminotransferase activity independent of obesity and alcohol: a study in monozygotic and dizygotic twins. J Hepatol 50:1035–1042

    Article  PubMed  Google Scholar 

  • Middelberg RP, Benyamin B, De Moor MHM, Warrington NM, Gordon S, Henders AK et al (2012) Loci affecting gamma-glutamyl transferase in adults and adolescents show age x SNP interaction and cardiometabolic disease associations. Hum Mol Genet 21:446–455

    Article  PubMed  Google Scholar 

  • Miyake K, Miyake N, Kondo S, Tabe Y, Ohsaka A, Miida T (2009) Seasonal variation in liver function tests: a time-series analysis of outpatient data. Ann Clin Biochem 46:377–384

    Article  PubMed  Google Scholar 

  • Neale MC, Cardon LR (1992) Methodology for genetic studies of twins and families. Kluwer, Dordrecht

    Book  Google Scholar 

  • Neale MC, Boker SM, Xie G, Maes HH (2006) Mx: Statistical modeling (7 ed), 7th edn. VCU, Richmond

    Google Scholar 

  • Nilsson SE, Read S, Berg S, Johansson B (2009) Heritabilities for fifteen routine biochemical values: findings in 215 Swedish twin pairs 82 years of age or older. Scand J Clin Lab Invest 69:562–569

    Article  PubMed  Google Scholar 

  • Pilia G, Chen WM, Scuteri A, Orru M, Albai G, Dei M et al (2006) Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet 2:e132

    Article  PubMed  Google Scholar 

  • Posthuma D, Boomsma DI (2000) A note on the statistical power in extended twin designs. Behav Genet 30:147–158

    Article  PubMed  Google Scholar 

  • Posthuma D, Beem AL, de Geus EJC, van Baal GCM, von Hjelmborg JB, Iachine I et al (2003) Theory and practice in quantitative genetics. Twin Res Hum Genet 6:361–376

    Google Scholar 

  • Pratt DS, Kaplan MM (2000) Evaluation of abnormal liver-enzyme results in asymptomatic patients. N Eng J Med 342:1266–1271

    Article  Google Scholar 

  • Rahman I, Bennet AM, Pedersen NL, de Faire U, Svensson P, Magnusson PKE (2009) Genetic dominance influences blood biomarker levels in a sample of 12,000 Swedish elderly twins. Twin Res Hum Genet 12:286–294

    Article  PubMed  Google Scholar 

  • Rahmioglu N, Andrew T, Cherkas L, Surdulescu G, Swaminathan R, Spector TD et al (2009) Epidemiology and genetic epidemiology of the liver function test proteins. PLoS One 4:e4435

    Article  PubMed  Google Scholar 

  • Ruhl CE, Everhart JE (2009) Elevated serum alanine aminotransferase and gamma-glutamyltransferase and mortality in the United States population. Gastroenterology 136:477–485

    Article  PubMed  Google Scholar 

  • Schindhelm RK, Diamant M, Dekker JM, Tushuizen ME, Teerlink T, Heine RJ (2006) Alanine aminotransferase as a marker of nonalcoholic fatty liver disease in relation to type 2 diabetes mellitus and cardiovascular disease. Diabetes Metab Res Rev 22:437–443

    Article  PubMed  Google Scholar 

  • Sillanaukee P, Alho H, Strid N, Jousilahti P, Vartiainen E, Olsson U et al (2000) Effect of hormone balance on carbohydratedeficient transferrin and gammaglutamyltransferase in female social drinkers. Alcohol Clin Exp Res 24:1505–1509

    Article  PubMed  Google Scholar 

  • Skurtveit S, Tverdal A (2002) Sex differences in gamma-glutamyltransferase in people aged 40–42 years in two Norwegian counties. Drug Alcohol Depend 67:95–98

    Article  PubMed  Google Scholar 

  • Sookoian S, Pirola CJ (2011) Meta-analysis of the influence of I148 M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 53:1883–1894

    Article  PubMed  Google Scholar 

  • Stromme JH, Rustad P, Steensland H, Theodorsen L, Urdal P (2004) Reference intervals for eight enzymes in blood of adult females and males measured in accordance with the International Federation of Clinical Chemistry reference system at 37 C: part of the Nordic Reference Interval Project. Scand J Clin Lab Invest 64:371–384

    Article  PubMed  Google Scholar 

  • Sung J, Lee K, Song YM (2011) Heritabilities of Alcohol Use Disorders Identification Test (AUDIT) scores and alcohol biomarkers in Koreans: the KoGES (Korean Genome Epi Study) and Healthy Twin Study. Drug Alcohol Depend 113:104–109

    Article  PubMed  Google Scholar 

  • Targher G (2009) Elevated serum gamma-glutamyltransferase activity is associated with increased risk of mortality, incident type 2 diabetes, cardiovascular events, chronic kidney disease and cancer: a narrative review. Clin Chem Lab Med 48:147–157

    Google Scholar 

  • Van Grootheest DS, van den Berg SM, Cath DC, Willemsen G, Boomsma DI (2008) Marital resemblance for obsessivecompulsive, anxious and depressive symptoms in a population-based sample. Psychol Med 38:1731–1740

    Article  PubMed  Google Scholar 

  • Vernon G, Baranova A, Younossi ZM (2011) Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 34:274–285

    Article  PubMed  Google Scholar 

  • Vink JM, Beem AL, Posthuma D, Neale MC, Willemsen G, Kendler KS et al (2004) Linkage analysis of smoking initiation and quantity in Dutch sibling pairs. Pharmacogenomics J 4:274–282

    Article  PubMed  Google Scholar 

  • Vink JM, Staphorsius AS, Boomsma DI (2009) A genetic analysis of coffee consumption in a sample of Dutch twins. Twin Res Hum Genet 12:127–131

    Article  PubMed  Google Scholar 

  • Whitfield JB, Martin NG (1985) Individual differences in plasma ALT, AST and GGT: contributions of genetic and environmental factors, including alcohol consumption. Enzyme 33:61–69

    PubMed  Google Scholar 

  • Whitfield JB, Zhu G, Nestler JE, Heath AC, Martin NG (2002) Genetic covariation between serum gamma-glutamyltransferase activity and cardiovascular risk factors. Clin Chem 48:1426–1431

    PubMed  Google Scholar 

  • Willemsen G, de Geus EJC, Bartels M, Van Beijsterveldt CEM, Brooks AI, Estourgie-van Burk GF et al (2010) The Netherlands Twin Register biobank: a resource for genetic epidemiological studies. Twin Res Hum Genet 13:231–245

    Article  PubMed  Google Scholar 

  • Willemsen G, Vink JM, Abdellaoui A, Den Braber A, Van Beek JHDA, Draisma HHM et al (2013) The Adult Netherlands Twin Register: 25 years of survey and biological data collection. Twin Res Hum Genet 16(1):271–281

    Article  PubMed  Google Scholar 

  • Yuan X, Waterworth D, Perry JRB, Lim N, Song K, Chambers JC et al (2008) Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes. Am J Hum Genet 83:520–528

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been executed in the Mental Health research program of the EMGO Institute for Health and Care Research and was supported by grants from the Netherlands Organization for Scientific Research (NWO) (ZonMW Addiction 31160008; NWO/SPI 56-464-14192; NWO 016-115-035; NWO-MW 904-61-193) and the European Research Council (Genetics of Mental Illness: ERC-230374; ERC starting grant 284167). We thank Professor J.B. Whitfield for useful discussions and the twin families for their participation in the NTR research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny H. D. A. van Beek.

Additional information

Edited by Sarah Medland.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 239 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Beek, J.H.D.A., de Moor, M.H.M., de Geus, E.J.C. et al. The Genetic Architecture of Liver Enzyme Levels: GGT, ALT and AST. Behav Genet 43, 329–339 (2013). https://doi.org/10.1007/s10519-013-9593-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-013-9593-y

Keywords

Navigation