Skip to main content

Advertisement

Log in

Genetics of Dopamine and its Contribution to Cocaine Addiction

  • Original Paper
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Cocaine addiction is a major health and social problem for which there are presently no effective pharmacotherapies. Many of the most promising medications target dopamine based on the large literature that supports its role in addiction. Recent studies show that genetic factors are also important. Rodent models and gene knock-out technology have helped elucidate the involvement of specific genes in the function of the dopamine reward system and intracellular cascades that lead to neuronal changes in this system. Human epidemiological, linkage, and association studies have identified allelic variants (polymorphisms) that give rise to altered metabolism of dopamine and its functional consequences. Individuals with these polymorphisms respond differently to psychostimulants and possibly to pharmacotherapies. Here we review the literature on genetic variations that affect dopamine neurotransmission, responses to psychostimulants and potential treatments for cocaine addiction. Behavioral responses to psychostimulants in animals with different or modified genetics in dopamine signaling are discussed. We also review polymorphisms in humans that affect dopaminergic neurotransmission and alter the subjective effects of psychostimulants. Pharmacotherapies may have increased efficacy when targeted to individuals possessing specific genetic polymophisms in dopamine’s metabolic and intracellular messenger systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Accili D, Fishburn CS, Drago J, Steiner H, Lachowicz JE, Park BH, Gauda EB, Lee EJ, Cool MH, Sibley DR, Gerfen CR, Westphal H, Fuchs S (1996) A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice. Proc Natl Acad Sci USA 93:1945–1949

    PubMed  CAS  Google Scholar 

  • Ahmed SH, Koob GF (1997) Cocaine- but not food-seeking behavior is reinstated by stress after extinction. Psychopharmacology 132:289–295

    PubMed  CAS  Google Scholar 

  • Ambrosio E, Goldberg SR, Elmer GI (1995) Behavior genetic investigation of the relationship between spontaneous locomotor activity and the acquisition of morphine self-administration behavior. Behav Pharmacol 6:229–237

    PubMed  CAS  Google Scholar 

  • Amit Z, Levitan DE, Lindros KO (1976) Suppression of ethanol intake folowing administration of dopamine-beta-hydroxylase inhibitors in rats. Arch Internal Pharmacodyn Therapeut 223:114–119

    CAS  Google Scholar 

  • Anisman H, Zaharia MD, Meaney MJ, Merali Z (1998) Do early-life events permanently alter behavioral and hormonal responses to stressors? Intl J Develop Neurosci 16:149–164

    CAS  Google Scholar 

  • Arnt J (1985) Antistereotypic effects of dopamine D-1 and D-2 antagonists after intrastriatal injection in rats. Pharmacological and regional specificity. Naunyn-Schmiedeberg’s Arch Pharmacol 330:97–104

    CAS  Google Scholar 

  • Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD (1998) The MAPK cascade is required for mammalian associative learning. Nat Neurosci 1:602–609

    PubMed  CAS  Google Scholar 

  • Bailey CP, Connor M (2005) Opioids:cellular mechanisms of tolerance and physical dependence. Curr Opin Pharmacol 5:60–68

    PubMed  CAS  Google Scholar 

  • Baldwin AE, Sadeghian K, Holahan MR, Kelley AE (2002) Appetitive instrumental learning is impaired by inhibition of cAMP-dependent protein kinase within the nucleus accumbens. Neurobiol Learn Memory 77:44–62

    CAS  Google Scholar 

  • Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37:407–419

    PubMed  CAS  Google Scholar 

  • Bartlett E, Hallin A, Chapman B, Angrist B (1997) Selective sensitization to the psychosis-inducing effects of cocaine: a possible marker for addiction relapse vulnerability? Neuropsychopharmacology 16:77–82

    PubMed  CAS  Google Scholar 

  • Beitner-Johnson D, Guitart X, Nestler EJ (1991) Dopaminergic brain reward regions of Lewis and Fischer rats display different levels of tyrosine hydroxylase and other morphine- and cocaine-regulated phosphoproteins. Brain Res 561:146–149

    Google Scholar 

  • Beitner-Johnson D, Guitart X, Nestler EJ (1993) Glial fibrillary acidic protein and the mesolimbic dopamine system: regulation by chronic morphine and Lewis–Fischer strain differences in the rat ventral tegmental area. J Neurochem 61:1766–1773

    PubMed  CAS  Google Scholar 

  • Berger SP, Winhusen TM, Somoza EC, Harrer JM, Mezinskis JP, Leiderman DB, Montgomery MA, Goldsmith RJ, Bloch DA, Singal BM, Elkashef A (2005) A medication screening trial evaluation of reserpine, gabapentin and lamotrigine pharmacotherapy of cocaine dependence. Addiction 100:58–67

    PubMed  Google Scholar 

  • Bergman J, Madras BK, Johnson SE, Spealman RD (1989) Effects of cocaine and related drugs in nonhuman primates III: Self-administration by squirrel monkeys. J Pharmacol Exp Therapeut 251:150–155

    CAS  Google Scholar 

  • Berhow MT, Hiroi N, Nestler EJ (1996) Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transduction cascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine. J Neurosci 16:4707–4715

    PubMed  CAS  Google Scholar 

  • Berke JD, Hyman SE (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25:515–532

    PubMed  CAS  Google Scholar 

  • Berrettini WH, Lerman CE (2005) Pharmacotherapy and pharmacogenetics of nicotine dependence. Am J Psych 162:1441–1451

    Google Scholar 

  • Betancur C, Lepee-Lorgeoux I, Cazillis M, Accili D, Fuchs S, Rostene W (2001) Neurotensin gene expression and behavioral responses following administration of psychostimulants and antipsychotic drugs in dopamine D(3) receptor deficient mice. Neuropsychopharmacology 24:170–182

    PubMed  CAS  Google Scholar 

  • Bibb JA, Chen J, Svenningsson P, Nishi A, Snyder GL, Yan Z, Sagawa ZK, Ouimet CC, Nairn AC, Nestler EJ, Greengard P (2001) Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 410:376–380

    PubMed  CAS  Google Scholar 

  • Bibb JA, Snyder GL, Nishi A, Yan Z, Meijer L, Fienberg AA, Tsai LH, Kwon YT, Girault JA, Czernick AJ, Huganir RL, Hemmings HC, Nairn AC, Greengard P (1999) Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature 402:669–671

    PubMed  CAS  Google Scholar 

  • Bindra D (1974) A motivational view of learning, performance and behavior modification. Psychological Review 81:199–213

    PubMed  CAS  Google Scholar 

  • Blanc G, Trovero F, Vezina P, Herve D, Godeheu AM, Glowinski J, Tassin JP (1994) Blockade of prefronto-cortical alpha 1-adrenergic receptors prevents locomotor hyperactivity induced by subcortical D-amphetamine injection. Euro J Neurosci 6:293–298

    CAS  Google Scholar 

  • Broadbent J, Michael EK, Riddle EE, Appel JB (1991) Involvement of dopamine uptake in the discriminative stimulus effects of cocaine. Behav Pharmacol 2:187–197

    PubMed  Google Scholar 

  • Brodkin ES, Carlezon WA, Haile CN, Kosten TA, Heninger GR, Nestler EJ (1998) Genetic analysis of behavioral, neuroendocrine, and biochemical parameters in inbred rodents: initial studies in Lewis and Fischer 344 rats and in A/J and C57BL/6J mice. Brain Res 805:55–68

    PubMed  CAS  Google Scholar 

  • Caine SB, Negus SS, Mello NK, Patel S, Bristow L, Kulagowski J, Vallone D, Saiardi A, Borrelli E (2002) Role of dopamine D2-like receptors in cocaine self-administration: studies with D2 receptor mutant mice and novel D2 receptor antagonists. J Neurosci 22:2977–2988

    PubMed  CAS  Google Scholar 

  • Carlezon WA, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28:436–445

    PubMed  CAS  Google Scholar 

  • Carlezon WA, Nestler EJ (2002) Elevated levels of GluR1 in the midbrain: a trigger for sensitization to drugs of abuse? Trends Neurosci 25:610–615

    PubMed  CAS  Google Scholar 

  • Carlezon WA, Thome J, Olson VG, Lane-Ladd SB, Brodkin ES, Hiroi N, Duman RS, Neve RL, Nestler EJ (1998) Regulation of cocaine reward by CREB. Science 282:2272–2275

    PubMed  CAS  Google Scholar 

  • Carr GD, Fibiger HC, Phillips AG (1989) Conditioned place preference as a measure of drug reward. In: Liebman J, Cooper S (eds) The neuropharmacological basis of reward. Oxford University Press: New York, pp 264–319

    Google Scholar 

  • Carroll KM, Fenton LR, Ball SA, Nich C, Frankforter TL, Shi J, Rounsaville BJ (2004) Efficacy of disulfiram and cognitive behavior therapy in cocaine-dependent outpatients: a randomized placebo-controlled trial. Arch Gen Psych 61:264–272

    CAS  Google Scholar 

  • Carroll KM, Nich C, Ball SA, McCance E, Rounsaville BJ (1998) Treatment of cocaine and alcohol dependence with psychotherapy and disulfiram. Addiction 93:713–727

    PubMed  CAS  Google Scholar 

  • Carroll KM, Ziedonis DM, O’Malley SS, McCance-Katz E, Gordon L, Rounsaville BJ (1993) Pharmacological interventions for alcohol-cocaine abusing individuals: A pilot study of disulfiram vs. naltrexone. Amer J Addict 2:77–79

    Article  Google Scholar 

  • Carta AR, Gerfen CR, Steiner H (2000) Cocaine effects on gene regulation in the striatum and behavior: increased sensitivity in D3 dopamine receptor-deficient mice. Neuroreport 11:2395–2399

    PubMed  CAS  Google Scholar 

  • Cervo L, Mukherjee S, Bertaglia A, Samanin R (1997) Protein kinases A and C are involved in the mechanisms underlying consolidation of cocaine place conditioning. Brain Res 775:30–36

    PubMed  CAS  Google Scholar 

  • Champagne F, Meaney MJ (2001) Like mother, like daughter: evidence for non-genomic transmission of parental behavior and stress responsivity. Progr Brain Res 133:287–302

    CAS  Google Scholar 

  • Champagne FA, Francis DD, Mar A, Meaney MJ (2003) Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiol Behav 79:359–371

    PubMed  CAS  Google Scholar 

  • Chausmer AL, Elmer GI, Rubinstein M, Low MJ, Grandy DK, Katz JL (2002) Cocaine-induced locomotor activity and cocaine discrimination in dopamine D2 receptor mutant mice. Psychopharmacology 163:54–61

    PubMed  CAS  Google Scholar 

  • Chen SH, Liu SH, Liang YC, Lin JK, Lin-Shiau SY (2001) Oxidative stress and c-Jun-amino-terminal kinase activation involved in apoptosis of primary astrocytes induced by disulfiram-Cu(2+) complex. Euro J Pharmacol 414:177–188

    CAS  Google Scholar 

  • Chergui K, Svenningsson P, Greengard P (2004) Cyclin-dependent kinase 5 regulates dopaminergic and glutamatergic transmission in the striatum. Proc Natl Acad Sci 101:2191–2196

    PubMed  CAS  Google Scholar 

  • Choi KH, Whistler K, Graham DL, Self DW (2006) Antisense-induced reduction in nucleus accumbens cyclic AMP response element binding protein attenuates cocaine reinforcement. Neuroscience 137:373–383

    PubMed  CAS  Google Scholar 

  • Collins RJ, Weeks JR, Cooper MM, Good PI, Russell RR (1984) Prediction of abuse liability of drugs using IV self-administration by rats. Psychopharmacology 82:6–13

    PubMed  CAS  Google Scholar 

  • Colpaert FC (1978) Discriminative stimulus properties of narcotic analgesic drugs. Pharmacol Biochem Be 9:863–887

    CAS  Google Scholar 

  • Comings DE, Blum K (2000) Reward deficiency syndrome: genetic aspects of behavioral disorders. Progr Brain Res 126:325–341

    CAS  Google Scholar 

  • Comings DE, Muhleman D, Ahn C, Gysin R, Flanagan SD (1994) The dopamine D2 receptor gene: a genetic risk factor in substance abuse. Drug Alcohol Depend 34:175–180

    PubMed  CAS  Google Scholar 

  • Cook EHJ, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE, Leventhal BL (1995) Association of attention-deficit disorder and the dopamine transporter gene. Amer J Human Genet 56:993–998

    CAS  Google Scholar 

  • Crawford CA, Choi FY, Kohutek JL, Yoshida ST, McDougall SA (2004) Changes in PKA activity and Gs alpha and Golf alpha levels after amphetamine- and cocaine-induced behavioral sensitization. Synapse 51:241–248

    PubMed  CAS  Google Scholar 

  • Cruz JC, Tsai LH (2004) A Jekyll and Hyde kinase: Roles for Cdk5 in brain development and disease. Curr Opin Neurobiol 14:390–394

    PubMed  CAS  Google Scholar 

  • Cubells JF, Kranzler HR, McCance-Katz E, Anderson GM, Malison RT, Price LH, Gelernter J (2000) A haplotype at the DBH locus, associated with low plasma dopamine b-hydroxylase activity, also associates with cocaine-induced paranoia. Mol Psych 5:56–63

    CAS  Google Scholar 

  • Cubells JF, van Kammen DP, Kelley ME, Anderson GM, O’Connor DT, Price LH, Malison R, Rao PA, Kobayashi K, Nagatsu T, Gelernter J (1998) Dopamine beta-hydroxylase: two polymorphisms in linkage disequilibrium at the structural gene DBH associate with biochemical phenotypic variation. Human Genet 102:533–540

    CAS  Google Scholar 

  • Cunningham KA, Bradberry CW, Chang AS, Reith MEA (1996) The role of serotonin in the actions of psychostimulants: molecular and pharmacological analyses. Behav Brain Res 73:93–102

    PubMed  CAS  Google Scholar 

  • Darracq L, Blanc G, Glowinski J, Tassin JP (1998) Importance of the noradrenaline-dopamine coupling in the locomotor activating effects of D-amphetamine. J Neurosci 18:2729–2739

    PubMed  CAS  Google Scholar 

  • Deminiere JM, Piazza PV, LeMoal M, Simon H (1989) Experimental approach to individual vulnerability to psychostimulant addiction. Neurosci Biobehav R 13:141–147

    CAS  Google Scholar 

  • Denenberg VH, Grota LJ, Zarrow MX (1963) Maternal behaviour in the rat: analysis of cross-fostering. J Reproduct Fertil 5:133–141

    Article  CAS  Google Scholar 

  • Deroche-Gamonet V, Belin D, Piazza PV (2004) Evidence for addiction-like behavior in the rat. Science 305:1014–1017

    PubMed  CAS  Google Scholar 

  • DeVoto P, FLore G, Pani L, Gessa GL (2001) Evidence for co-release of noradrenaline and dopamine from noradrenergic neurons in the cerebral cortex. Mol Psych 6:657–664

    CAS  Google Scholar 

  • DeWit H, Wise RA (1977) Blockade of cocaine reinforcement in rats with the dopamine receptor blocker pimozide, but not with the noradrenergic blockers phentolamine or phenoxybenzamine. Can J Psychol 31:195–203

    CAS  Google Scholar 

  • DiChiara G (1999) Drug addiction as dopamine-dependent associative learning disorder. Euro J Pharmacol 375:13–30

    CAS  Google Scholar 

  • Drago J, Gerfen CR, Westphal H, Steiner H (1996) D1 dopamine receptor-deficient mouse: cocaine-induced regulation of immediate-early gene and substance P expression in the striatum. Neuroscience 74:813–823

    PubMed  CAS  Google Scholar 

  • Drouin C, Darracq L, Trovero F, Blanc G, Glowinski J, Cotecchia S, Tassin J-P (2002) a-1b-adrenergic receptors control locomotor and rewarding effects of psychostimulants and opiates. J Neurosci 22:2873–2884

    PubMed  CAS  Google Scholar 

  • Duan J, Wainwright MS, Comeron JM, Saitou N, Sanders AR, Gelernter J, Gejman PV (2003) Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Human Mol Genet 12:205–216

    CAS  Google Scholar 

  • Ellenbroek BA, Cools AR (2000) The long-term effects of maternal deprivation depend on the genetic background. Neuropsychopharmacology 23:99–106

    PubMed  CAS  Google Scholar 

  • Ellinwood EH, Balster RL (1974) Rating the behavioral effects of amphetamine. Euro J Pharmacol 28:35–41

    CAS  Google Scholar 

  • Elliot EE, Sibley DR, Katz JL (2003) Locomotor and discriminative-stimulus effects of cocaine in dopamine D5 receptor knockout mice. Psychopharmacology 169:161–168

    PubMed  CAS  Google Scholar 

  • Eng LF (1985) Glial fibrillary protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes. J Neuroimmunol 8:203–214

    PubMed  CAS  Google Scholar 

  • Erb S, Shaham Y, Stewart J (1996) Stress reinstates cocaine-seeking behavior after prolonged extinction and a drug-free period. Psychopharmacology 128:408–412

    PubMed  CAS  Google Scholar 

  • Everitt BJ, Parkinson JA, Olmstead MC, Arroyo M, Robledo P, Robbins TW (1999) Associative processes in addiction and reward: the role of amygdala-ventral striatal subsystems. Annl NY Acad Sci 877:412–438

    CAS  Google Scholar 

  • Everitt BJ, Robbins TW (1992) Amygdala-ventral striatal interactions and reward-related processes. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York

    Google Scholar 

  • Everitt BJ, Robbins TW (2000) Second-order schedules of drug reinforcement in rats and monkeys: measurement of reinforcing efficacy and drug-seeking behaviour. Psychopharmacology 153:17–30

    PubMed  CAS  Google Scholar 

  • Fergusson DM, Horwood LJ, Lynskey MT, Madden PA (2003) Early reactions to cannabis predict later dependence. Arch Gen Psych 60:1033–1039

    Google Scholar 

  • Fienberg AA, Hiroi N, Mermelstein PG, Song W, Snyder GL, Nishi A, Cheramy A, O’Callaghan JP, Miller DB, Cole DB, Corbett R, Haile CN, Cooper DC, Onn SP, Grace AA, Ouimet CC, White FJ, Hyman SE, Surmeier DJ, Girault J, Nestler EJ, Greengard P (1998) DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science 281:838–842

    PubMed  CAS  Google Scholar 

  • Fischman MW, Schuster CR (1982) Cocaine self-administration in humans. Fed Proc 41:241–246

    PubMed  CAS  Google Scholar 

  • Fitzgerald LW, Ortiz J, Hamedani AG, Nestler EJ (1996) Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents. J Neurosci 16:274–282

    PubMed  CAS  Google Scholar 

  • Flores G, Wood GK, Barbeau D, Quirion R, Srivastava LK (1998) Lewis and Fischer rats: a comparison of dopamine transporter and receptors levels. Brain Res 814:34–40

    PubMed  CAS  Google Scholar 

  • Francis DD, Diorio J, Liu D, Meaney MJ (1999) Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286:1155–1158

    PubMed  CAS  Google Scholar 

  • Fuke S, Suo S, Takahashi N, Koike H, Sasagawa N, Ishiura S (2001) The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenom J 1:152–156

    CAS  Google Scholar 

  • Fuxe K, Agnati LF, Kalia M, Goldstein M, Anderson K, Harfstrand A (1985) Dopaminergic systems in the brain and pituitary. In: FLuckiger E, Muller EE, Thorner MO (eds) Basic and clinical aspects of neuroscience. Springer-Verlag, Berlin, pp 11–25

    Google Scholar 

  • Gabbay FH (2003) Variations in affect following amphetamine and placebo: markers of stimulant drug preference. Exp Clin Psychopharmacol 11:91–101

    PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Caron MG (2003) Monoamine transporters: from genes to behavior. Annu Rev Pharmacol Toxicol 43:261–284

    PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG (1999) Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283:397–401

    PubMed  CAS  Google Scholar 

  • Garver E, Ross AD, Tu GC, Cao QN, Zhou F, Israel Y (2000) Paradigm to test a drug-induced aversion to ethanol. Alcohol 35:435–438

    CAS  Google Scholar 

  • Gawin FH, Kleber HD (1986) Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Arch Gen Psychiat 43:107–113

    PubMed  CAS  Google Scholar 

  • Gelernter J, Kranzler HR, Satel SL, Rao PA (1994) Genetic association between dopamine transporter protein alleles and cocaine-induced paranoia. Neuropsychopharmacology 11:195–200

    PubMed  CAS  Google Scholar 

  • George TP, Chawarski MC, Pakes J, Carroll KM, Kosten TR, Schottenfeld RS (2000) Disulfiram versus placebo for cocaine dependence in buprenorphine-maintained subjects: a preliminary trial. Biol Psych 47:1080–1086

    CAS  Google Scholar 

  • Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    PubMed  CAS  Google Scholar 

  • Glowa JR, Geyer MA, Gold PW, Sternberg EM (1992) Differential startle amplitude and corticosterone response in rats. Neuroendocrinology 56:719–723

    PubMed  CAS  Google Scholar 

  • Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J Neurochem 13:655–669

    PubMed  CAS  Google Scholar 

  • Goldman D, Oroszi G, Ducci F (2005a) The genetics of addictions: uncovering the genes. Nat Rev Genet 6:521–532

    CAS  Google Scholar 

  • Goldman D, Oroszi G, O’Malley S, Anton R (2005b) COMBINE genetics study: the pharmacogenetics of alcoholism treatment response: genes and mechanisms. J Stud Alcohol Suppl:56–64

  • Goldstein M, Nakajima K (1967) The effect of disulfiram on catecholamine levels in the brain. J Pharmacol Exp Therapeut 157:96–102

    CAS  Google Scholar 

  • Gomez-Serrano M, Tonelli L, Listwak S, Sternberg E, Riley AL (2001) Effects of cross fostering on open-field behavior, acoustic startle, lipopolysaccharide-induced corticosterone release, and body weight in Lewis and Fischer rats. Behav Genet 31:427–436

    PubMed  CAS  Google Scholar 

  • Gomez-Serrano MA, Sternberg EM, Riley AL (2002) Maternal behavior in F344/N and Lew/N rats: effects on carrageenan-induced inflammatory reactivity and body weight. Physiol Behav 75:493–505

    PubMed  CAS  Google Scholar 

  • Gonzalez G, Sevarino KA, Sofuoglu M, Poling J, Oliveto A, Gonsai K, George TP, Kosten TA (2003) Tiagabine increases cocaine-free urines in cocaine-dependent methadone-treated patients: results of a randomized pilot study. Addiction 98:1625–1632

    PubMed  Google Scholar 

  • Greengard P, Allen PB, Nairn AC (1999) Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 23:435–447

    PubMed  CAS  Google Scholar 

  • Grigson PS, Freet CS (2000) The suppressive effects of sucrose and cocaine, but not lithium chloride, are greater in Lewis than in Fischer rats: evidence for the reward comparison hypothesis. Behav Neurosci 114:353–363

    PubMed  CAS  Google Scholar 

  • Grzanna R, Coyle JT (1977) Immunochemical studies on the turnover of rat serum dopamine beta-hydroxylase. Mol Pharmacol 13:956–964

    PubMed  CAS  Google Scholar 

  • Guitart X, Beitner-Johnson D, Marby DW, Kosten TA, Nestler EJ (1992) Fischer and Lewis rat strains differ in basal levels of neurofilament proteins and their regulation by chronic morphine in the mesolimbic dopamine system. Synapse 12:242–253

    PubMed  CAS  Google Scholar 

  • Guitart X, Kogan JH, Berhow M, Terwilliger RZ, Aghajanian GK, Nestler EJ (1993) Lewis and Fischer rat strains display differences in biochemical, electrophysiological and behavioral parameters: studies in the nucleus accumbens and locus coeruleus of drug naive and morphine-treated animals. Brain Res 611:7–17

    PubMed  CAS  Google Scholar 

  • Haertzen CA, Kocher TR, Miyasato K (1983) Reinforcements from the first drug experience can predict later drug habits and/or addiction: results with coffee, cigarettes, alcohol, barbiturates, minor and major tranquilizers, stimulants, marijuana, hallucinogens, heroin, opiates and cocaine. Drug Alcohol Depend 11:147–165

    PubMed  CAS  Google Scholar 

  • Haile CN, During MJ, Jatlow PI, Kosten TR, Kosten TA (2003) Disulfiram facilitates the development and expression of locomotor sensitization to cocaine in rats. Biol Psych 54:915–921

    CAS  Google Scholar 

  • Haile CN, Hiroi N, Nestler EJ, Kosten TA (2001) Differential behavioral responses to cocaine are associated with dynamics of mesolimbic proteins in Lewis and Fischer 344 rats. Synapse 41:179–190

    PubMed  CAS  Google Scholar 

  • Haile CN, Kosten TA (2001) Differential effects of D1- and D2-like compounds on cocaine self-administration in Lewis and Fischer 344 inbred rats. J Pharmacol Exp Therapeut 299:509–518

    CAS  Google Scholar 

  • Haile CN, Zhang X-Y, Carroll FI, Kosten TA (2005) Cocaine self-administration and locomotor activity are altered in Lewis and F344 inbred rats by RTI 336, a 3-phenyltropane analog that binds to the dopamine transporter. Brain Res 1055(1–2):186–195

    Google Scholar 

  • Hall CS (1936) Emotional behavior in the rat. III. The relationship between emotionality and ambulatory activity. J Comp Physiol Psychol 22:345–352

    Google Scholar 

  • Hall FS (1998) Social deprivation of neonatal, adolescent, and adult rats has distinct neurochemical and behavioral consequences. Crit Rev Neurobiol 12:129–162

    PubMed  CAS  Google Scholar 

  • Hall FS, Sora I, Drgonova J, Li XF, Goeb M, Uhl GR (2004) Molecular mechanisms underlying the rewarding effects of cocaine. Ann NY Acad Sci 1025:47–56

    PubMed  CAS  Google Scholar 

  • Hameedi FA, Rosen MI, McCance-Katz EF, McMahon TJ, Price LH, Jatlow PI, SW W, TR K (1995) Behavioral, physiological and pharmacological interaction of cocaine and disulfiram. Biol Psych 37:560–563

    Google Scholar 

  • Harris JE, Baldessarini RJ (1973) Uptake of [3H]-catecholamines by homogenates of rat corpus striatum and cerebral cortex: Effects of amphetamine analogues. Neuropharmacology 12:659–679

    Google Scholar 

  • Heinz A, Goldman D, Jones DW, Palmour R, Hommer D, Gorey JG, Lee KS, Linnoila M, Weinberger DR (2000) Genotype influences in vivo dopamine transporter availability in human striatum. Neuropsychopharmacology 22:133–139

    PubMed  CAS  Google Scholar 

  • Heusner CL, Hnasako TS, Szczypka MS, Liu Y, During MJ, Palmiter RD (2003) Viral restoration of dopamine to the nucleus accumbens is sufficient to induce a locomotor response to amphetamine. Brain Res 980:266–274

    PubMed  CAS  Google Scholar 

  • Higgins ST, Budney AJ, Bickel WK, Hughes JF, Foerg F (1993) Disulfiram therapy in patients abusing cocaine and alcohol. Amer J Psych 150:675–676

    CAS  Google Scholar 

  • Hiroi N, Fienberg AA, Haile CN, Alburges M, Hanson GR, Greengard P, Nestler EJ (1999) Neuronal and behavioural abnormalities in striatal function in DARPP-32-mutant mice. Euro J Neurosci 11:1114–1118

    CAS  Google Scholar 

  • Hofer MA (1983) The mother-infant interaction as a regulator of infant physiology and behavior. In: Rosenblum L, Moltz H (eds) Symbiosis in parent-offspring interactions. Plenum Press, New York, pp 61–75

    Google Scholar 

  • Hofer MA (1996) On the nature and consequences of early loss. Psychosom Med 58:570–581

    PubMed  CAS  Google Scholar 

  • Holmes A, Hollon TR, Gleason TC, Liu Z, Dreiling J, Sibley DR, Crawley JN (2001) Behavioral characterization of dopamine D5 receptor null mutant mice. Behav Neurosci 115:1129–1144

    PubMed  CAS  Google Scholar 

  • Hong CJ, Cheng CY, Shu LR, Yang CY, Tsai LH (2003) Association study of the dopamine and serotonin transporter genetic polymorphisms and methamphetamine abuse in Chinese males. J Neural Transmis 110:345–351

    CAS  Google Scholar 

  • Horan B, Smith M, Gardner EL, Lepore M, Ashby CR (1997) (−)-Nicotine produces conditioned place preference in Lewis, but not in Fischer 344 rats. Synapse 26:93–94

    PubMed  CAS  Google Scholar 

  • Hyman SE (2005) Addiction: a disease of learning and memory. Am J Psych 162:1414–1422

    Google Scholar 

  • Jacobsen LK, Staley JK, Zoghbi SS, Seibyl JP, Kosten TR, Innis RB, Gelernter J (2000) Prediction of dopamine transporter binding availability by genotype: a preliminary report. Amer J Psych 157:1700–1703

    CAS  Google Scholar 

  • Johansson B (1989) Carbonyl sulfide: a copper chelating metabolite of disulfiram. Drug Metabol Dispos 17:351–353

    CAS  Google Scholar 

  • Jones PA, Taylor SM (1980) Cellular differentiation, cytidine analogs and DNA methylation. Cell 20:85–93

    PubMed  CAS  Google Scholar 

  • Jonsson EG, Nothen MM, Gustavsson JP, Neidt H, Bunzel R, Propping P, Sedvall GC (1998) Polymorphisms in the dopamine, serotonin, and norepinephrine transporter genes and their relationships to monoamine metabolite concentrations in CSF of healthy volunteers. Psych Res 79:1–9

    CAS  Google Scholar 

  • Kalivas PW, McFarland K (2003) Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology 168:44–56

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Rev 16:223–244

    PubMed  CAS  Google Scholar 

  • Kamien JB, Bickel WK, Hughes JR (1993) Drug discrimination by humans compared to nonhumans: current status and future directions. Psychopharmacology 111:259–270

    PubMed  CAS  Google Scholar 

  • Kano T, Suzuki Y, Shibuya M, Kiuchi K, Hagiwara M (1995) Cocaine-induced CREB phosphorylation and cFos expression are suppressed in Parkinsonism model mice. Neuroreport 6:2197–2200

    PubMed  CAS  Google Scholar 

  • Karamanakos PN, Pappas P, Stephanou P, Marselos M (2001) Differentiation of disulfiram effects on central catecholamines and hepatic ethanol metabolism. Pharmacol Toxicol 88:106–110

    PubMed  CAS  Google Scholar 

  • Karasinska JM, George SR, Cheng R, O’Dowd BF (2005) Deletion of dopamine D1 and D3 receptors differentially affects spontaneous behaviour and cocaine-induced locomotor activity, reward and CREB phosphorylation. Euro J Neurosci 22:1741–1750

    Google Scholar 

  • Karima C, Svenningsson P, Greengard P (2004) Cyclin-dependent kinase 5 regulates dopaminergic and glutamatergic transmission in the striatum. Proc Natl Acad Sci 101:2191–2196

    Google Scholar 

  • Katz JL (1989) Drugs as reinforcers: pharmacological and behavioral factors. In: Liebman J, Coopers S (eds) The neuropharmacological basis of reward. Oxford University Press: New York, pp 164–213

    Google Scholar 

  • Katz JL, Higgins ST (2003) The validity of the reinstatement model of craving and relapse to drug use. Psychopharmacology 168:21–30

    PubMed  CAS  Google Scholar 

  • Katzev RD, Mills SK (1974) Strain differences in avoidance conditioning as a function of the classical CS-US contingency. J Comp Physiol Psychol 87:661–671

    PubMed  CAS  Google Scholar 

  • Kaufman S, Friedman S (1965) Dopamine-beta-hydroxylase. Pharmacol Rev 17:71–100

    PubMed  CAS  Google Scholar 

  • Kelley AE (2004) Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 44:161–179

    PubMed  CAS  Google Scholar 

  • Kelley AE, Holahan MR (1997) Enhanced reward-related responding following cholera toxin infusion into the nucleus accumbens. Synapse 26:46–54

    PubMed  CAS  Google Scholar 

  • Kelly A, Laroche S, Davis S (2003) Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase in hippocampal circuitry is required for consolidation and reconsolidation of recognition memory. J Neurosci 23:5354–5360

    PubMed  CAS  Google Scholar 

  • Kelly MA, Rubinstein M, Phillips TJ, Lessov CN, Burkhart-Kasch S, Zhang G, Bunzow JR, Fang Y, Gerhardt GA, Grandy DK, Low MJ (1998) Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J Neurosci 18:3470–3479

    PubMed  CAS  Google Scholar 

  • Kilts CD, Schweitzer JB, Quinn CK, Gross RE, Faber TL, Muhammad F, Ely TD, Hoffman JM, Drexler KP (2001) Neural activity related to drug craving in cocaine addiction. Arch Gen Psychiatry 58:334–341

    PubMed  CAS  Google Scholar 

  • Kim DS, Szczypka MS, Palmiter RD (2000) Dopamine-deficient mice are hypersensitive to dopamine receptor agonists. J Neurosci 20:4405–4413

    PubMed  CAS  Google Scholar 

  • Kleven MS, Anthony EW, Woolverton WL (1990) Pharmacological characterization of the discriminative stimulus effects of cocaine in rhesus monkeys. J Pharmacol Exp Ther 317:254–312

    Google Scholar 

  • Knapp CM, Lee L, Foye M, Ciraulo DA, Kornetsky C (2001) Additive effects of intra-accumbens infusion of the cAMP-specific phosphodiesterase inhibitor, rolipram and cocaine on brain stimulation reward. Life Sci 69:1673–1682

    PubMed  CAS  Google Scholar 

  • Kohnke MD, Zabetian CP, Anderson GM, Kolb W, Gaertner I, Buchkremer G, Vonthein R, Schick S, Lutz U, Kohnke AM, Cubells JF (2002) A genotype-controlled analysis of plasma dopamine beta-hydroxylase in healthy and alcoholic subjects: evidence for alcohol-related differences in noradrenergic function. Biol Psych 52:1151–1158

    CAS  Google Scholar 

  • Koob GF, Goeders NE (1989) Neuroanatomical substrates of drug self-administration. In: Liebman J, Cooper S (eds) The neuropharmacological basis of reward. Oxford University Press: New York, pp 214–263

    Google Scholar 

  • Kosten TA, Ambrosio E (2002) HPA axis function and drug addictive behaviors: insights from studies with Lewis and Fischer 344 inbred rats. Psychoneuroendocrinology 27:35–69

    PubMed  CAS  Google Scholar 

  • Kosten TA, DeCaprio JL, Nestler EJ (1996) Long-term haloperidol administration enhances and short-term administration attenuates the behavioral effects of cocaine in a place conditioning procedure. Psychopharmacology 128:304–312

    PubMed  CAS  Google Scholar 

  • Kosten TA, Kehoe P (2005) Neonatal isolation is a relevant model for studying the contributions of early life stress to vulnerability to drug abuse: response to Marmendal et al. 2004. Develop Psychobiol 47:108–110

    Google Scholar 

  • Kosten TA, Kosten TR (1991) Pharmacological blocking agents for treating substance abuse. J Nerv Mental Dis 179:583–592

    CAS  Google Scholar 

  • Kosten TA, Miserendino MJD, Chi S, Nestler EJ (1994) Fischer and Lewis rat strains show differential cocaine effects in conditioned place preference and behavioral sensitization but not in locomotor activity or conditioned taste aversion. J Pharmacol Exp Therapeut 269:137–144

    CAS  Google Scholar 

  • Kosten TA, Miserendino MJD, Haile CN, DeCaprio JL, Jatlow PI, Nestler EJ (1997) Acquisition and maintenance of intravenous cocaine self-administration in Lewis and Fischer inbred rat strains. Brain Res 778:418–429

    PubMed  CAS  Google Scholar 

  • Kosten TA, Sanchez H, Zhang XY, Kehoe P (2004) Neonatal isolation enhances acquisition of cocaine self-administration and food responding in female rats. Behav Brain Res 151:137–149

    PubMed  CAS  Google Scholar 

  • Kosten TA, Zhang X-Y, Kehoe P (2005) Neurochemical and behavioral responses to cocaine in adult male rats with neonatal isolation experience. J Pharmacol Exp Therapeut 314:661–667

    CAS  Google Scholar 

  • Kosten TA, Zhang X-Y, Kehoe P (2006) Heightened cocaine and food self-administration in female rats with neonatal isolation experience. Neuropsychopharmacology 31:70–76

    PubMed  CAS  Google Scholar 

  • Kosten TR, George TP, Kosten TA (2002) The potential of dopamine agonists in drug addiction. Expert Opin Investigat Drugs 11:491–499

    CAS  Google Scholar 

  • Kreek MJ, Bart G, Lilly C, LaForge KS, Nielsen DA (2005) Pharmacogenetics and human molecular genetics of opiate and cocaine addictions and their treatments. Pharmacol Rev 57:1–26

    Google Scholar 

  • Kruglyak L, Nickerson DA (2001) Variation is the spice of life. Nature Genet 27:234–236

    PubMed  CAS  Google Scholar 

  • Kruzich PJ, Suchland KL, Grandy DK (2004) Dopamine D4 receptor-deficient mice, congenic on the C57BL/6J background, are hypersensitive to amphetamine. Synapse 53:131–139

    PubMed  CAS  Google Scholar 

  • Kuhn CM, Schanberg SM (1998) Responses to maternal separation: mechanisms and mediators. Intl J Develop Neurosci 16:261–270

    CAS  Google Scholar 

  • Kuribara H, Higashida A, Tadokoro S (1984) Selective suppression of schedule-induced ethanol drinking by antialcoholic drugs in rats. Jap J Pharmacol 35:123–128

    PubMed  CAS  Google Scholar 

  • LeFoll B, Diaz J, Sokoloff P (2005) Neuroadaptations to hyperdopaminergia in dopamine D3 receptor-deficient mice. Life Sci 76:1281–1296

    CAS  Google Scholar 

  • LeFoll B, Frances H, Diaz J, Schwartz JC, Sokoloff P (2002) Role of the dopamine D3 receptor in reactivity to cocaine-associated cues in mice. Eur J Neurosci 15:2016–2026

    Google Scholar 

  • Lehmann J, Feldon J (2000) Long-term biobehavioral effects of maternal separation in the rat: consistent or confusing? Rev Neurosci 11:383–408

    PubMed  CAS  Google Scholar 

  • Levine S (1987) Psychobiologic consequences of disruption in mother-infant relationships. In: Krasneger N, Blass E, Hofer M, Smotherman W (eds) Perinatal development: a psychobiological perspective. Academic Press, New York

    Google Scholar 

  • Lin Z, Uhl GR (2003) Human dopamine transporter gene variation: effects of protein coding variants V55A and V382A on expression and uptake activities. Pharmacogenom J 3:159–168

    CAS  Google Scholar 

  • Lipska BK, Weinberger DR (1995) Genetic variation in vulnerability to the behavioral effects of neonatal hippocampal damage in rats. Proc Natl Acad Sci USA 92:8906–8910

    PubMed  CAS  Google Scholar 

  • Liu D, Diorio J, Day JC, Francis DD, Meaney MJ (2000) Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nature Neurosci 3:799–806

    PubMed  CAS  Google Scholar 

  • Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freedman A, Sharma S, Pearson D, Plotsky PM, Meaney MJ (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277:1659–1662

    PubMed  CAS  Google Scholar 

  • Lott DC, Kim SJ, Cook EH, Jr., de Wit H (2005) Dopamine transporter gene associated with diminished subjective response to amphetamine. Neuropsychopharmacology 30:602–9

    PubMed  CAS  Google Scholar 

  • Lu L, Hope BT, Dempsey J, Liu SY, Bossert JM, Shaham Y (2005) Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nat Neurosci 8:212–219

    PubMed  CAS  Google Scholar 

  • Lynch WJ, Taylor JR (2005) Persistent changes in motivation to self-administer cocaine following modulation of cyclic AMP-dependent protein kinase A (PKA) activity in the nucleus accumbens. Euro J Neurosci 22:1214–1220

    CAS  Google Scholar 

  • Mackintosh NJ (1974) The psychology of animal learning. Academic Press, Academic Press

  • Maj J, Przegalinski E (1967) Disulfiram and some effects of amphetamine in mice and rats. J Pharmacy Pharmacol 19:341–342

    CAS  Google Scholar 

  • Maj J, Przegalinski E, Wielosz M (1968) Disulfiram and the drug-induced effects on motility. J Pharmacy Pharmacol 20:247–248

    CAS  Google Scholar 

  • Malhortra AK, Murphy GMJ, Kennedy JL (2004) Pharmacogenetics of psychotropic drug response. Amer J Psych 161:780–796

    Google Scholar 

  • Mangiavacchi S, Wolf ME (2004) D1 dopamine receptor stimulation increases the rate of AMPA receptor insertion onto the surface of cultured nucleus accumbens neurons through a pathway dependent on protein kinase A. J Neurochem 88:1261–1271

    PubMed  CAS  Google Scholar 

  • Mardones J, Contreras S, Segovia-Riquelme N (1988) A method for recognizing specific effects on ethanol intake by experimental animals. Alcohol 5:15–19

    PubMed  CAS  Google Scholar 

  • Markou A, Weiss F, Gold LH, Caine SB, Schulteis G, Koob GF (1993) Animal models of drug craving. Psychopharmacology 112:163–182

    PubMed  CAS  Google Scholar 

  • Martinez D, Gelernter J, Abi-Dargham A, van Dyck CH, Kegeles L, Innis RB, Laruelle M (2001) The variable number of tandem repeats polymorphism of the dopamine transporter gene is not associated with significant change in dopamine transporter phenotype in humans. Neuropsychopharmacology 24:553–560

    PubMed  CAS  Google Scholar 

  • Mayer P, Hollt V (2005) Genetic disposition to addictive disorders–current knowledge and future perspectives. Curr Opin Pharmacol 5:4–8

    PubMed  CAS  Google Scholar 

  • Mayer P, Hollt V (2006) Pharmacogenetics of opioid receptors and addiction. Pharmacogenet Genom 16:1–7

    CAS  Google Scholar 

  • Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2:599–609

    PubMed  CAS  Google Scholar 

  • McCance-Katz EF, Kosten TR, Jatlow PI (1998) Disulfiram effects on acute cocaine administration. Drug Alcohol Depend 52:27–29

    PubMed  CAS  Google Scholar 

  • McClung CA, Nestler EJ (2003) Regulation of gene expression and cocaine reward by CREB and DeltaFosB. Nature Neurosci 6:1208–1215

    PubMed  CAS  Google Scholar 

  • McClung CA, Ulery PG, Perrotti LI, Zachariou V, Berton O, Nestler EJ (2004) DeltaFosB: a molecular switch for long-term adaptation in the brain. Mol Brain Res 132:146–154

    PubMed  CAS  Google Scholar 

  • McKenna ML, Ho BT (1980) The role of dopamine in the discriminative stimulus properties of cocaine. Neuropharmacology 19:297–303

    PubMed  CAS  Google Scholar 

  • Mead AN, Rocha BA, Donovan DM, Katz JL (2002) Intravenous cocaine induced-activity and behavioural sensitization in norepinephrine-, but not dopamine-transporter knockout mice. Euro J Neurosci 16:514–520

    Google Scholar 

  • Meaney MJ (2001) Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annl Rev Neurosci 24:1161–1192

    CAS  Google Scholar 

  • Meaney MJ, Diorio R, Francis D, Widdowson J, LaPlante P, Caldji C, Sharm V, Seckl JR, Plotsky PM (1996) Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocortical responses to stress. Develop Neurosci 18:49–72

    CAS  Google Scholar 

  • Mello NK, Negus SS (1996) Preclinical evaluation of pharmacotherapies for treatment of cocaine and opioid abuse using drug self-administration procedures. Neuropsychopharmacology 14:375–424

    PubMed  CAS  Google Scholar 

  • Mill J, Asherson P, Browes C, D’Souza U, Craig I (2002) Expression of the dopamine transporter gene is regulated by the 3′ UTR VNTR: Evidence from brain and lymphocytes using quantitative RT-PCR. Amer J Med Genet 114:975–979

    Google Scholar 

  • Miller CA, Marshall JF (2005) Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory. Neuron 47:873–884

    PubMed  CAS  Google Scholar 

  • Miner LL, Drago J, Chamberlain PM, Donovan D, Uhl GR (1995) Retained cocaine conditioned place preference in D1 receptor deficient mice. Neuroreport 6:2314–2316

    PubMed  CAS  Google Scholar 

  • Miserendino MJD, Nestler E (1995) Behavioral sensitization to cocaine: modulation by the cyclic AMP system in the nucleus accumbens. Brain Res 674:299–306

    PubMed  CAS  Google Scholar 

  • Morrison JH, Molliver ME, Grzanna R, Coyle JT (1981) The intra-cortical trajectory of the coeruleo-cortical projection in the rat: a tangentially organized cortical afferent. Neuroscience 6:139–158

    PubMed  CAS  Google Scholar 

  • Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nature Rev Neurosci 2:119–128

    CAS  Google Scholar 

  • Nestler EJ (2004) Molecular mechanisms of drug addiction. Neuropharmacology 47:24–32

    PubMed  CAS  Google Scholar 

  • Nestler EJ (2005) Is there a common molecular pathway for addiction? Nature Neurosci 8:1445–1449

    PubMed  CAS  Google Scholar 

  • Nestler EJ, Terwilliger RZ, Walker JR, Sevarino KA, Duman RS (1990) Chronic cocaine treatments decrease levels of the G protein subnits Gia and Goa in discrete regions of the rat brain. J Neurochem 55:1079–1082

    PubMed  CAS  Google Scholar 

  • Noble EP (2000) Addiction and its reward process through polymorphisms of the D2 dopamine receptor gene: a review. Euro Psych 15:79–89

    CAS  Google Scholar 

  • Noble EP, Blum K, Khalsa ME, Ritchie T, Montgomery A, Wood RC, Fitch RJ, Ozkaragoz T, Sheridan PJ, Anglin MD (1993) Allelic association of the D2 dopamine receptor gene with cocaine dependence. Drug Alcohol Depend 33:271–285

    PubMed  CAS  Google Scholar 

  • O’Brien CP (2005) Anticraving medications for relapse prevention: a possible new class of psychoactive medications. Amer J Psych 162:1423–1431

    Google Scholar 

  • O’Hara BF, Smith SS, Bird G, Persico AM, Suarez BK, Cutting GR, Uhl GR (1993) Dopamine D2 receptor RFLPs, haplotypes and their association with substance use in black and Caucasian research volunteers. Human Hered 43:209–218

    Article  CAS  Google Scholar 

  • Olson VG, Zabetian CP, Bolanos CA, Edwards S, Barrot M, Eisch AJ, Hughes T, Self DW, Neve RL, Nestler EJ (2005) Regulation of drug reward by cAMP response element-binding protein: evidence for two functionally distinct subregions of the ventral tegmental area. J Neurosci 8:5553–5562

    Google Scholar 

  • Ortiz J, DeCaprio JL, Kosten TA, Nestler EJ (1995) Strain-selective effects of corticosterone on locomotor sensitization to cocaine and on levels of tyrosine hydroxylase and glucocorticoid receptor in the ventral tegmental area. Neuroscience 67:383–397

    PubMed  CAS  Google Scholar 

  • Ortiz J, Fitzgerald LW, Lane S, Terwilliger R, Nestler E (1996) Biochemical adaptations in the mesolimbic dopamine system in response to repeated stress. Neuropsychopharmacology 14:433–452

    Google Scholar 

  • Oxenstierna G, Edman G, Iselius L, Oreland L, Ross SB, Sedvall G (1986) Concentrations of monoamine metabolites in the cerebrospinal fluid of twins and unrelated individuals—a genetic study. J Psych Res 20:19–29

    CAS  Google Scholar 

  • Paladini CA, Mitchell JM, Williams JT, Mark GP (2004) Cocaine self-administration selectively decreases noradrenergic regulation of metabotropic glutamate receptor-mediated inhibition in dopamine neurons. J Neurosci 24:5209–5215

    PubMed  CAS  Google Scholar 

  • Pandey SC (2004) The gene transcription factor cyclic AMP-responsive element binding protein: role in positive and negative affective states of alcohol addiction. Pharmacol Therapeut 104:47–58

    CAS  Google Scholar 

  • Panlilio LV, Schindler CW (1997) Conditioned locomotor-activating and reinforcing effects of discrete stimuli paired with intra-peritoneal cocaine. Behav Pharmacol 8:691–698

    PubMed  CAS  Google Scholar 

  • Panlilio LV, Weiss SJ, Schindler CW (1996) Cocaine self-administration increased by compounding discriminative stimuli. Psychopharmacology 125:202–208

    PubMed  CAS  Google Scholar 

  • Persico AM, Bird G, Gabbay FH, Uhl GR (1996) D2 dopamine receptor gene TaqI A1 and B1 restriction fragment length polymorphisms: enhanced frequencies in psychostimulant-preferring polysubstance abusers. Biol Psych 40:776–784

    CAS  Google Scholar 

  • Petrakis IL, Carroll KM, Nich C, Gordon LT, McCance-Katz EF, Frankforter T, Rounsaville BJ (2000) Disulfiram treatment for cocaine dependence in methadone-maintained opioid addicts. Addiction 95:219–228

    PubMed  CAS  Google Scholar 

  • Pettit HO, Ettenberg A, Bloom FE, Koob GF (1984) Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology 84:167–173

    PubMed  CAS  Google Scholar 

  • Pettit HO, Justice JB (1989) Dopamine in the nucleus accumbens during cocaine self-administration as studied by in vivo microdialysis. Pharmacol Biochem Behav 34:899–904

    PubMed  CAS  Google Scholar 

  • Piazza PV, LeMoal M (1998) The role of stress in drug self-administration. Trends Pharmacol Sci 19:67–74

    PubMed  CAS  Google Scholar 

  • Pickens R, Meisch RA, Thompson T (1978) Drug self-administration: an analysis of the reinforcing effects of drugs. In: Iverson L, Iverson S, Snyder S (eds) Handbook of Psychopharmacology, vol 12. Plenum Press: New York, pp 1–37

    Google Scholar 

  • Post RM, Weiss SRB, Pert A, Uhde TW (1987) Chronic cocaine administration: sensitization and kindling effects. In: Fisher S, Raskin A, Uhlenhuth E (eds) Cocaine: clinical and biobehavioral aspects. Oxford University Press, New York, pp 109–173

    Google Scholar 

  • Pryce CR, Lehmann J, Feldon J (1999) Effect of sex on fear conditioning is similar for context and discrete CS in Wistar, Lewis, and Fischer rat strains. Pharmacol Biochem Behav 64:753–759

    PubMed  CAS  Google Scholar 

  • Rahman MA, Grunberg NE, Mueller GP (1997) Disulfiram causes sustained behavioral and biochemical effects in rats. Pharmacol Biochem Behav 56:409–415

    PubMed  CAS  Google Scholar 

  • Razin A (1998) CpG methylation, chromatin structure and gene silencing-a three-way connection. EMBO J 17:4905–4908

    PubMed  CAS  Google Scholar 

  • Rescorla RA, Solomon RL (1967) Two process learning theory: relationship between Pavlovian and instrumental conditioning. Psychol Rev 74:151–182

    PubMed  CAS  Google Scholar 

  • Ritchie T, Noble EP (2003) Association of seven polymorphisms of the D2 dopamine receptor gene with brain receptor-binding characteristics. Neurochem Res 28:73–82

    PubMed  CAS  Google Scholar 

  • Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ (1987) Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237:1219–1223

    PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt BJ (1999) Drug addiction: bad habits add up. Nature 398:567–570

    PubMed  CAS  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res Rev 11:157–198

    CAS  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive sensitization theory of addiction. Brain Res Rev 18:247–291

    PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (2001) Incentive-sensitization and addiction. Addiction 96:103–114

    PubMed  CAS  Google Scholar 

  • Robinson TE, Kolb B (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47:33–46

    PubMed  CAS  Google Scholar 

  • Rocha BA, Fumagalli F, Gainetdinov RR, Jones SR, Ator R, Giros B, Miller GW, Caron MJ (1998) Cocaine self-administration in dopamine-transporter knockout mice. Nature Neurosci 1:132–137

    PubMed  CAS  Google Scholar 

  • Ross SB, Wetterberg L, Myrhed M (1973) Genetic control of plasma dopamine-beta-hydroxylase. Life Sci 12:529–532

    PubMed  CAS  Google Scholar 

  • Rubinstein M, Phillips TJ, Bunzow JR, Falzone TL, Dziewczapolski G, Zhang G, Fang Y, Larson JL, McDougall JA, Chester JA, Saez C, Pugsley TA, Gershanik O, Low MJ, Grandy DK (1997) Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell 90:991–1001

    PubMed  CAS  Google Scholar 

  • Sakai N, Thome J, Newton SS, Chen J, Kelz MB, Steffen C, Nestler EJ, Duman RS (2002) Inducible and brain region-specific CREB transgenic mice. Mol Pharmacol 61:1453–1464

    PubMed  CAS  Google Scholar 

  • SAMHSA (2003) 2003 National survey on drug use & health: detailed tables. http://oas.samhsa.gov/NHSDA/2k3tabs/Sect1peTabs1to66.htm#tab1.1a

  • Schank JR, Ventura R, Puglisi-Allegra S, Alcaro A, Cole CD, Liles LC, Seeman P, Weinshenker D (2006) Dopamine beta-hydroxylase knockout mice have alterations in dopamine signaling and are hypersensitive to cocaine. Neuropsychopharmacology 31:2221–2230

    PubMed  CAS  Google Scholar 

  • Scheggi S, Rauggi R, Gambarana C, Tagliamonte A, Montis MGD (2004) Dopamine and cyclic AMP-regulated phosphoprotein-32 phosphorylation pattern in cocaine and morphine-sensitized rats. J Neurochem 90:792–799

    PubMed  CAS  Google Scholar 

  • Scheel-Kruger J, Baestrup C, Nielson M, Golembiowska K, Mogilnicka E (1977) Cocaine: discussion on the role of dopamine in the biochemical mechanisms of action. In: Ellinwood EE, Kilbey M (eds) Cocaine and other stimulants. Plenum Press, New York

    Google Scholar 

  • Schroeder JA, Hummel M, Unterwald EM (2004) Repeated intracerebroventricular forskolin administration enhances behavioral sensitization to cocaine. Behav Brain Res 153:255–260

    PubMed  CAS  Google Scholar 

  • Schuster CR, Thompson T (1969) Self-administration of and behavioral dependence on drugs. Annu Rev Pharmacol 9:483–502

    PubMed  CAS  Google Scholar 

  • Self DW, Genova LM, Hope BT, Barnhart WJ, Spencer JJ, Nestler EJ (1998) Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior. J Neurosci 18:1848–1859

    PubMed  CAS  Google Scholar 

  • Self DW, Terwilliger RZ, Nestler EJ, Stein L (1994) Inactivation of Gi and G(o) proteins in nucleus accumbens reduces both cocaine and heroin reinforcement. J Neurosci 14:6239–6247

    PubMed  CAS  Google Scholar 

  • Shaham Y, Stewart J (1995) Stress reinstates heroin-seeking in drug free animals: an effect mimicing heroin, not withdrawal. Psychopharmacology 119:334–341

    PubMed  CAS  Google Scholar 

  • Shaywitz AJ, Greenberg ME (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annl Rev Biochem 68:821–861

    CAS  Google Scholar 

  • Sheppard SG (1994) A preliminary investigation of ibogaine: case reports and recommendations for further study. J Substance Abuse Treat 11:379–385

    CAS  Google Scholar 

  • Shi WX, Pun CL, Zhang XX, Jones MD, Bunney BS (2000) Dual effects of d-amphetamine on dopamine neurons mediated by dopamine and nondopamine receptors. J Neurosci 20:3504–3511

    PubMed  CAS  Google Scholar 

  • Shoptaw S, Watson DW, Reiber C, Rawson RA, Montgomery MA, Majewska MD, Ling W (2005) Randomized controlled pilot trial of cabergoline, hydergine and levodopa/carbidopa: Los Angeles Cocaine Rapid Efficacy Screening Trial (CREST). Addiction 11:78–90

    Google Scholar 

  • Shoptaw S, Yang X, Rotheram-Fuller EJ, Hsieh YC, Kintaudi PC, Charuvastra VC, Ling W (2003) Randomized placebo-controlled trial of baclofen for cocaine dependence: preliminary effects for individuals with chronic patterns of cocaine use. J Clin Psych 64:1440–1448

    Article  CAS  Google Scholar 

  • Siegel S (1979) The role of conditioning in drug tolerance and addiction. In: Keehn J (ed) Psychopathology in animals: research and clinical applications. Academic Press: New York, pp 143–168

    Google Scholar 

  • Siviy SM, Love NJ, DeCicco BM, Giordano SB, Seifert TL (2003) The relative playfulness of juvenile Lewis and Fischer-344 rats. Physiol Behav 80:385–394

    PubMed  CAS  Google Scholar 

  • Snyder GL, Allen PB, Fienberg AA, Valle CG, Huganir RL, Nairn AC, Greengard P (2000) Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo. J Neurosci 20:4480–4488

    PubMed  CAS  Google Scholar 

  • Snyder SH, Coyle JT (1969) Regional differences in H3-norepinephrine and H3-dopamine uptake into rat brain homogenates. J Pharmacol Exp Therapeut 165:78–86

    CAS  Google Scholar 

  • Sofuoglu M, Kosten TR (2006) Emerging pharmacological strategies in the fight against cocaine addiction. Expert Opin Investig Drugs 11:91–98

    CAS  Google Scholar 

  • Sora I, Wichems C, Takahashi N, Li XF, Zeng Z, Revay R, Lesch KP, Murphy ML, Uhl GR (1998) Cocaine reward models: conditioned place preference can be established in dopamine- and in serotonin-transporter knockout mice. Proc Natl Acad Sci 95:7699–7704

    PubMed  CAS  Google Scholar 

  • Stanwood GD, Parlaman JP, Levitt P (2005) Anatomical abnormalities in dopaminoceptive regions of the cerebral cortex of dopamine D1 receptor mutant mice. J Comp Neurol 487:270–282

    PubMed  CAS  Google Scholar 

  • Stein MA, Waldman ID, Sarampote CS, Seymour KE, Robb AS, Conlon C, Kim SJ, Cook EH (2005) Dopamine transporter genotype and methylphenidate dose response in children with ADHD. Neuropsychopharmacology 30:1374–1382

    PubMed  CAS  Google Scholar 

  • Steketee JD, Kalivas PW (1991) Sensitization to psychostimulants and stress after injection of pertussis toxin into the A10 dopamine region. J Pharmacol Exp Therapeut 259:916–924

    CAS  Google Scholar 

  • Sternberg EM, Young S, Bernardini R, Calogero AE, Chrousos GP, Gold PW, Wilder RL (1989) A central nervous system defect in biosynthesis of corticotropin-releasing hormone is associated with susceptibility to streptococcal cell wall-induced arthritis in Lewis rats. Proc Natl Acad Sci USA 86:4771–4775

    PubMed  CAS  Google Scholar 

  • Stewart J, deWit H (1987) Reinstatement of drug-taking behavior as a method of assessing incentive motivational properties of drugs. In: Bozarth MA (ed) Methods of assessing the reinforcing properties of abused drugs. Springer: New York, pp 211–227

    Google Scholar 

  • Stewart J, deWit H, Eikelboom R (1984) Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychol Rev 91:251–268

    PubMed  CAS  Google Scholar 

  • Stewart LC, Klinman JP (1988) Dopamine beta-hydroxylase of adrenal chromaffin granules: structure and function. Annu Rev Biochem 57:551–592

    PubMed  CAS  Google Scholar 

  • Stolk JM, Hurst J, VanRiper DA, Harris PQ (1979) Genetic analysis of serum dopamine-beta-hydroxylase activity in rats. Mol Pharmacol 16:922–931

    PubMed  CAS  Google Scholar 

  • Striplin CD, Kalivas PW (1993) Robustness of G protein changes in cocaine sensitization shown with immunoblotting. Synapse 14:10–15

    PubMed  CAS  Google Scholar 

  • Suzuki T, George FR, Meisch RA (1988) Differential establishment and maintenance of oral ethanol reinforced behavior in Lewis and Fisher 344 inbred rat strains. J Pharmacol Exp Therapeut 245:164–170

    CAS  Google Scholar 

  • Svenningsson P, Nairn AC, Greengard P (2005) DARPP-32 mediates the actions of multiple drugs of abuse. AAPS J 7:E353–E360

    PubMed  CAS  Google Scholar 

  • Swanson LW, Hartman BK (1975) The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-beta-hydroxylase as a marker. J Comp Neurol 163:467–505

    PubMed  CAS  Google Scholar 

  • Szumlinski KK, Maisonneuve IM, Glick SD (1999) Pretreatment with the putative anti-addictive drug, ibogaine, increases the potency of cocaine to elicit locomotor responding: a study with acute and chronic cocaine-treated rats. Psychopharmacology 145:227–233

    PubMed  CAS  Google Scholar 

  • Takahashi S, Ohshima T, Cho A, Sreenath T, Iadarola MJ, Pant HC, Kim Y, Nairn AC, Brady RO, Greengard P, Kulkarni AB (2005) Increased activity of cyclin-dependent kinase 5 leads to attenuation of cocaine-mediated dopamine signaling. Proc Natl Acad Sci 102:1737–1742

    PubMed  CAS  Google Scholar 

  • Tang Y, Anderson GM, Zabetian CP, Kohnke MD, Cubells JF (2005) Haplotype-controlled analysis of the association of a non-synonymous single nucleotide polymorphism at DBH (+1603C– > T) with plasma dopamine beta-hydroxylase activity. Amer J Med Genet B Neuropsych Genet 139:88–89

    Google Scholar 

  • Taylor SS, Buechler JA, Yonemoto W (1990) cAMP-dependent protein kinase: Framework for a diverse family of regulatory enzymes. Annl Rev Biochem 59:971–1005

    CAS  Google Scholar 

  • Terwilliger RZ, Beitner-Johnson D, Sevarino KA, Crain SM, Nestler EJ (1991a) A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res 548:100–110

    CAS  Google Scholar 

  • Terwilliger RZ, Beitner-Johnson D, Sevarino KA, Crain SM, Nestler EJ (1991b) A general role for adaptions in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res 548:100–110

    CAS  Google Scholar 

  • Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5:173–183

    PubMed  CAS  Google Scholar 

  • Towell JF, Cho JK, Roh BL, Wang RI (1983) Disulfiram and erythrocyte aldehyde dehydrogenase inhibition. Clin Pharmacol Therapeut 33:517–521

    Article  CAS  Google Scholar 

  • Tully T, Bourtchouladze R, Scott R, Tallman J (2003) Targeting the CREB pathway for memory enhancers. Nature Rev Drug Dis 2:267–277

    CAS  Google Scholar 

  • Uhl GR, Hall FS, Sora I (2002) Cocaine, reward, movement and monoamine transporters. Mol Psych 7:21–26

    CAS  Google Scholar 

  • Ujike H, Harano M, Inada T, Yamada M, Komiyama T, Sekine Y, Sora I, Iyo M, Katsu T, Nomura A, Nakata K, Ozaki N (2003) Nine- or fewer repeat alleles in VNTR polymorphism of the dopamine transporter gene is a strong risk factor for prolonged methamphetamine psychosis. Pharmacogenet J 3:242–247

    CAS  Google Scholar 

  • Ungless MA, Whistler JL, Malenka RC, Bonci A (2001) Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. 411:583–587

  • Upchurch M, Wehner JM (1988) Differences between inbred strains of mice in Morris water maze performance. Behav Genet 18:55–68

    PubMed  CAS  Google Scholar 

  • Vaccari A, Saba PL, Ruiu S, Collu M, Devoto P (1996) Disulfiram and diethyldithiocarbamate intoxication affects the storage and release of striatal dopamine. Toxicol Appl Pharmacol 139:102–108

    PubMed  CAS  Google Scholar 

  • Valjent E, Corvol JC, Pages C, Besson MJ, Maldonado R, Caboche J (2000) Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. J Neurosci 20:8701–8709

    PubMed  CAS  Google Scholar 

  • Valjent E, Pascoli V, Svenningsson P, Paul S, Enslen H, Corvol JC, Stipanovich A, Caboche J, Lombroso PJ, Nairn AC, Greengard P, Herve D, Girault J (2005) Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc Natl Acad Sci USA 102:253–254

    Google Scholar 

  • van Dyck CH, Malison RT, Jacobsen LK, Seibyl JP, Staley JK, Laruelle M, Baldwin RM, Innis RB, Gelernter J (2005) Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene. J Nucl Med 46:745–751

    PubMed  Google Scholar 

  • Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW, Uhl GR (1992) Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 14:1104–1106

    PubMed  CAS  Google Scholar 

  • Vandenbergh DJ, Thompson MD, Cook EH, Bendahhou E, Nguyen T, Krasowski MD, Zarrabian D, Comings D, Sellers EM, Tyndale RF, George SR, O’Dowd BF, Uhl GR (2000) Human dopamine transporter gene: coding region conservation among normal, Tourette’s disorder, alcohol dependence and attention-deficit hyperactivity disorder populations. Mol Pharmacol 5:283–292

    CAS  Google Scholar 

  • Vanderschuren LJ, Everitt BJ (2004) Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 305:1017–1019

    PubMed  CAS  Google Scholar 

  • Vanderschuren LJMJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology 151:99–120

    PubMed  CAS  Google Scholar 

  • Varty GB, Geyer MA (1998) Effects of isolation rearing on startle reactivity, habituation, and prepulse inhibition in male Lewis, Sprague-Dawley, and Fischer F344 rats. Behav Neurosci 112:1450–1457

    PubMed  CAS  Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng ZH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG et al. (2001) The sequence of the human genome. Science 291:1304–1351

    Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ, Swanson JM (2004) Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. Mol Psych 9:557–569

    CAS  Google Scholar 

  • Walsh SL, Cunningham KA (1997) Serotonergic mechanisms involved in the discriminative stimulus, reinforcing and subjective effects of cocaine. Psychopharmacology 130:41–58

    PubMed  CAS  Google Scholar 

  • Walters CL, Blendy JA (2001) Different requirements for cAMP response element binding protein in positive and negative reinforcing properties of drugs of abuse. J Neurosci 21:9438–9444

    PubMed  CAS  Google Scholar 

  • Walters CL, Kuo YC, Blendy JA (2003) Differential distribution of CREB in the mesolimbic dopamine reward pathway. J Neurochem 87:1237–1244

    PubMed  CAS  Google Scholar 

  • Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nature Neurosci 7:847–854

    PubMed  CAS  Google Scholar 

  • Wei J, Ramchand CN, Hemmings HC (1997) Possible control of dopamine beta-hydroxylase via a codominant mechanism associated with the polymorphic (GT)n repeat at its gene locus in healthy individuals. Human Genet 99:52–55

    CAS  Google Scholar 

  • Weinshenker D, Miller NS, Blizinsky K, Laughlin ML, Palmiter RD (2002) Mice with chronic norepinephrine deficiency resemble amphetamine-sensitized animals. Proc Natl Acad Sci 99:13873–13877

    PubMed  CAS  Google Scholar 

  • Weinshilboum RM, Raymond FA, Elveback LR, Weidman WH (1973) Serum dopamine-beta-hydroxylase activity: sibling-sibling correlation. Science 181:943–945

    PubMed  CAS  Google Scholar 

  • White NM (1989) Reward or reinforcement: what’s the difference? Neurosci Biobehav Rev 13:181–186

    PubMed  CAS  Google Scholar 

  • White NM (1996) Addictive drugs as reinforcers: multiple partial actions on memory systems. Addiction 91:921–965

    PubMed  CAS  Google Scholar 

  • Wikler A (1973) Dynamics of drug dependence. Arch Gen Psych 28:611–616

    CAS  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    PubMed  CAS  Google Scholar 

  • Wise RA (2004) Dopamine,learning and motivation. Nature Rev Neurosci 5:483–494

    CAS  Google Scholar 

  • Wise RA, Rompre PP (1989) Brain dopamine and reward. In: Rosenzweig MR, Porter LW (eds) Annual review of psychology. Annual Reviews Inc, Palo Alto, CA, pp 191–225

    Google Scholar 

  • Witkin JM, Nichols DE, Terry P, Katz JL (1991) Behavioral effects of selective dopaminergic compounds in rats discriminating cocaine injections. J Pharmacol Exp Therap 257:706–713

    CAS  Google Scholar 

  • Wong W, Scott JD (2004) AKAP signalling complexes: Focal points in space and time. Nat Rev Mol Cell Biol 5:959–970

    PubMed  CAS  Google Scholar 

  • Wood GK, Marcotte ER, Quirion R, Vrivastava LK (2001) Strain differences in the behavioural outcome of neonatal ventral hippocampal lesions are determined by the postnatal environment and not genetic factors. Euro J Neurosci 14:1030–1034

    CAS  Google Scholar 

  • Wright C, Moore RD (1990) Disulfiram treatment of alcoholism. Amer J Med 88:647–655

    PubMed  CAS  Google Scholar 

  • Xu F, Gainetdinov RR, Wetsel WC, Jones SR, Bohn LM, Miller GW, Wang YM, Caron MG (2000) Mice lacking the norepinephrine transporter are supersenstivit to psychostimulants. Nat Neurosci 3:465–471

    PubMed  CAS  Google Scholar 

  • Xu M, Hu XT, Cooper DC, Moratalla R, Graybiel AM, White FJ, Tonegawa S (1994) Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice. Cell 79:945–955

    PubMed  CAS  Google Scholar 

  • Young RM, Lawford BR, Nutting A, Noble EP (2004) Advances in molecular genetics and the prevention and treatment of substance misuse: Implications of association studies of the A1 allele of the D2 dopamine receptor gene. Addict Behav 29:1275–1294

    PubMed  Google Scholar 

  • Zabetian CP, Anderson GM, Buxbaum SG, Elston RC, Ichinose H, Nagatsu T, Kim KS, Kim C-H, Malison RT, Gelernter J, Cubells JF (2001) A quantitative trait locus analysis of human dopamine-hydroxylase activity: evidence for a major functional polymorphism at the DBH locus. Amer J Human Genet 68:515–522

    CAS  Google Scholar 

  • Zabetian CP, Buxbaum SG, Elston RC, Kohnke MD, Anderson GM, Gelernter J, Cubells JF (2003) The structure of linkage disequilibrium at the DBH locus strongly influences the magnitude of association between diallelic markers and plasma dopamine beta-hydroxylase activity. Amer J Human Genet 72:1389–400

    CAS  Google Scholar 

  • Zachariou V, Sgambato-Faure V, Sasaki T, Svenningsson P, Berton O, Fienberg AA, Nairn AC, Greengard P, Nestler EJ (2005a) Phosphorylation of DARPP-32 at Threonine-34 is required for cocaine action. Neuropsychopharmacology:1–8

  • Zachariou V, Sgambato-Faure V, Sasaki T, Svenningsson P, Berton O, Fienberg AA, Nairn AC, Greengard P, Nestler EJ (2005b) Phosphorylation of DARPP-32 at threonine-34 is required for cocaine action. Neuropsychopharmacology 31:555–562

    Google Scholar 

  • Zaharia MD, Kulczycki J, Shanks N, Meaney MJ, Anisman H (1996) The effects of early postnatal stimulation on Morris water-maze acquisition in adult mice: genetic and maternal factors. Psychopharmacology 128:227–239

    PubMed  CAS  Google Scholar 

  • Zhang XY, Kosten TA (2005) Prazosin, an a-1 adrenergic antagonist, reduces cocaine-induced reinstatement of drug-seeking. Biological Psychiatry 57:1202–1204

    PubMed  CAS  Google Scholar 

  • Zhang X-Y, Kosten TA (in press) Previous exposure to cocaine enhances cocaine self-administration in an alpha-1 adrenergic receptor dependent manner. Neuropsychopharmacology

  • Zhou QY, Palmiter RD (1995) Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83:1197–1209

    PubMed  CAS  Google Scholar 

  • Zito KA, Vickers G, Roberts DC (1985) Disruption of cocaine and heroin self-administration following kainic acid lesions of the nucleus accumbens. Pharmacol Biochem Behav 23:1029–1036

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by NIDA P50-DA018197 and NIDA K05-DA00454 (TRK) and the Veterans Healthcare Administration MERIT review (TRK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Therese A. Kosten.

Additional information

Edited by Gene Fisch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haile, C.N., Kosten, T.R. & Kosten, T.A. Genetics of Dopamine and its Contribution to Cocaine Addiction. Behav Genet 37, 119–145 (2007). https://doi.org/10.1007/s10519-006-9115-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-006-9115-2

Keywords

Navigation