Skip to main content
Log in

Pivoting based manipulation by a humanoid robot

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

In this paper we address whole-body manipulation of bulky objects by a humanoid robot. We adopt a “pivoting” manipulation method that allows the humanoid to displace an object without lifting, but by the support of the ground contact. First, the small-time controllability of pivoting is demonstrated. On its basis, an algorithm for collision-free pivoting motion planning is established taking into account the naturalness of motion as nonholonomic constraints. Finally, we present a whole-body motion generation method by a humanoid robot, which is verified by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiyama, Y., Inaba, M., & Inoue, H. (1993). Pivoting: A new method of graspless manipulation of object by robot fingers. In Proc. 1993 IEEE/RSJ int. conf. on intelligent robots and systems (pp. 136–143).

  • Arechavaleta, G., Laumond, J. P., Hicheur, H., & Berthoz, A. (2008). An optimality principle governing human walking. IEEE Transactions on Robotics, 24(1), 5–14.

    Article  Google Scholar 

  • Arisumi, H., Chardonnet, J. R., Kheddar, A., & Yokoi, K. (2007). Dynamic lifting motion of humanoid robots. In Proc. of IEEE int. conf. on robotics and automation (pp. 2661–2667).

  • Baerlocher, P., & Boulic, R. (2004). An inverse kinematics architecture enforcing and arbitrary number of strict priority levels. The Visual Computer, 20, 402–417.

    Article  Google Scholar 

  • Bicchi, A., Chitour, Y., & Marigo, A. (2004). Reachability and steering of rolling polyhedra: a case study in discrete nonholonomy. IEEE Transactions on Automatic Control, 49(5), 710–726.

    Article  MathSciNet  Google Scholar 

  • Brock, O., Kuffner, J., & Xiao, J. (2008). Motion for manipulation tasks. In B. Siciliano & O. Khatib (Eds.), Handbook of robotics (pp. 615–645). Berlin: Springer.

    Chapter  Google Scholar 

  • Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., & Thrun, S. (2006). Principles of robot motion: theory, algorithms, and implementation. Cambridge: MIT Press.

    Google Scholar 

  • Harada, H., Kajita, S., Kanehiro, F., Fujiwara, K., Kaneko, K., Yokoi, K., & Hirukawa, H. (2004). Real-time planning of humanoid robot’s gait for force controlled manipulation. In Proc. 2004 IEEE int. conf. on robotics and automation (pp. 616–622).

  • Harada, H., Kajita, S., Saito, H., Morisawa, M., Kanehiro, F., Fujiwara, K., Kaneko, K., & Hirukawa, H. (2005). A humanoid robot carrying a heavy object. In Proc. 2005 IEEE int. conf. on robotics and automation (pp. 1712–1717).

  • Hsu, D., Latombe, J. C., & Sorkin, S. (1999). Placing a robot manipulator amid obstacles for optimized execution. In Proc. 1999 int. symp. on assembly and task planning (pp. 280–285).

  • Hwang, Y., Konno, A., & Uchiyama, M. (2003). Whole body cooperative tasks and static stability evaluations for a humanoid robot. In Proc. 2003 IEEE/RSJ int. conf. on intelligent robots and systems (pp. 1901–1906).

  • Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H. (2003). Biped walking pattern generation by using preview control of zero-moment point. In Proc. 2003 IEEE int. conf. on robotics and automation (pp. 1620–1626).

  • Kanehiro, F., Hirukawa, H., & Kajita, S. (2004). OpenHRP: Open architecture humanoid robotics platform. International Journal of Robotics Research, 23(2), 155–165.

    Article  Google Scholar 

  • Kaneko, K., Kanehiro, F., Kajita, S., Hirukawa, H., Kawasaki, T. M Hirata, K.A., & Isozumi, T. (2004). The humanoid robot HRP-2. In Proc. 2004 IEEE int. conf. on robotics and automation (pp. 1083–1090).

  • Laumonded, J. P. (Ed.) (1998). Robot motion planning and control. Lectures notes in control and information sciences (Vol. 229). Berlin: Springer.

    Google Scholar 

  • Laumond, J. P. (2006). Kineo CAM: a success story of motion planning algorithms. IEEE Robotics & Automation Magazine, 13(2), 90–93.

    Article  Google Scholar 

  • LaValle, S. (2006). Planning algorithm. Cambridge: Cambridge University Press.

    Google Scholar 

  • Maeda, Y., Nakamura., T., & Arai, T. (2004). Motion planning of robot fingertips for graspless manipulation. In Proc. 2004 IEEE int. conf. on robotics and automation (pp. 2951–2956).

  • Nakamura, Y. (1991). Advanced robotics: redundancy and optimization. Boston: Addison-Wesley Longman Publishing.

    Google Scholar 

  • Okada, K., Haneda, A., Nakai, H., Inaba, M., & Inoue, H. (2004). Environment manipulatio planner for humanoid robots using task graph that generates action sequence. In Proc. 2004 IEEE/RSJ int. conf. on intelligent robots and systems (pp. 1174–1179).

  • Reeds, J. A., & Shepp, R. A. (1990). Optimal paths for a car that goes both forwards and backwards. Pacific Journal of Mathematics, 145(2), 367–393.

    MathSciNet  Google Scholar 

  • Siciliano, B., & Slotine, J. J. E. (1991). A general framework for managing multiple tasks in highly redundant robotic systems. In Proc. IEEE int. conf. on advanced robotics (pp. 1211–1216).

  • Simeon, T., Laumond, J. P., & Nissoux, C. (2000). Visibility-based probabilistic roadmaps for motion planning. Advanced Robotics, 14(6), 477–494.

    Article  Google Scholar 

  • Soueres, P., & Laumond, J. P. (1996). Shortest paths synthesis for a car-like robot. IEEE Transactions on Automatic Control, 41(5), 672–688.

    Article  MATH  MathSciNet  Google Scholar 

  • Stilman, M., Nishiwaki, K., Kagami, S., & Kuffner, J. (2006). Planning and executing navigation among movable obstacles. In Proc. 2003 IEEE/RSJ int. conf. on intelligent robots and systems (pp. 820–826).

  • Sugihara, T., Nakamura, Y., & Inoue, H. (2002). Realtime humanoid motion generation through zmp manipulation based on inverted pendulum control. In Proc. 2002 IEEE int. conf. on robotics and automation (pp. 1404–1409).

  • Sussmann, H. (1982). Lie brackets, real analyticity and geometric control. In R. Brockett, R. Millman, & H. Sussmann (Eds.), Progress in mathematics : Vol. 27. Differential geometric control theory (pp. 1–116). Birkhauser: Michigan Technological University.

    Google Scholar 

  • Takubo, T., Inoue, K., Sakata, K., Mae, Y., & Arai, T. (2004). Mobile manipulation of humanoid robots—control method for com position with external force. In Proc. 2004 IEEE/RSJ int. conf. on intelligent robots and systems (pp. 1180–1185).

  • Yoshida, E., Blazevic, P., Hugel, V., Yokoi, K., & Harada, K. (2006a). Pivoting a large object: whole-body manipulation by a humanoid robot. Journal of Applied Bionics and Biomechanics, 3(3), 227–235.

    Article  Google Scholar 

  • Yoshida, E., Kanoun, O., Esteves, C., Laumond, J. P., & Yokoi, K. (2006b). Task-driven support polygon reshaping for humanoids. In Proc. 2006 IEEE-RAS int. conf. on humanoid robots (pp. 827–832).

  • Yoshida, E., Esteves, C., Belousov, I., Laumond, J. P., Sakaguchi, T., & Yokoi, K. (2008). Planning 3D collision-free dynamic robotic motion through iterative reshaping. IEEE Transactions on Robotics, 24(5), 1186–1198.

    Article  Google Scholar 

  • Yoshida, E., Poirier, M., Laumond, J. P., Kanoun, O., Lamiraux, F., Alami, R., & Yokoi, K. (2009). Regrasp planning for pivoting manipulation by a humanoid robot. In Proc. 2009 IEEE int. conf. on robotics and automation (pp. 2467–2472).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiichi Yoshida.

Additional information

Preliminary results related to this paper have been presented in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems and 2008 IEEE International Conference on Robotics and Automation.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Below is the link to the electronic supplementary material.

Below is the link to the electronic supplementary material.

Below is the link to the electronic supplementary material.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, E., Poirier, M., Laumond, JP. et al. Pivoting based manipulation by a humanoid robot. Auton Robot 28, 77–88 (2010). https://doi.org/10.1007/s10514-009-9143-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-009-9143-x

Keywords

Navigation