Skip to main content
Log in

Misestimation of temperature when applying Maxwellian distributions to space plasmas described by kappa distributions

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

This paper presents the misestimation of temperature when observations from a kappa distributed plasma are analyzed as a Maxwellian. One common method to calculate the space plasma parameters is by fitting the observed distributions using known analytical forms. More often, the distribution function is included in a forward model of the instrument’s response, which is used to reproduce the observed energy spectrograms for a given set of plasma parameters. In both cases, the modeled plasma distribution fits the measurements to estimate the plasma parameters. The distribution function is often considered to be Maxwellian even though in many cases the plasma is better described by a kappa distribution. In this work we show that if the plasma is described by a kappa distribution, the derived temperature assuming Maxwell distribution can be significantly off. More specifically, we derive the plasma temperature by fitting a Maxwell distribution to pseudo-data produced by a kappa distribution, and then examine the difference of the derived temperature as a function of the kappa index. We further consider the concept of using a forward model of a typical plasma instrument to fit its observations. We find that the relative error of the derived temperature is highly depended on the kappa index and occasionally on the instrument’s field of view and response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baluku, T.K., Hellberg, M.A., Kourakis, I., Saini, N.S.: Phys. Plasmas 17, 053702 (2010)

    Article  ADS  Google Scholar 

  • Carbary, J.F., Kane, M., Mauk, B.H., Krimigis, S.M.: J. Geophys. Res. 119, 8426–8447 (2014)

    Article  Google Scholar 

  • Chotoo, K., Schwadron, N.A., Mason, G.M., Zurbuchen, T.H., Gloeckler, G., Posner, A., Fisk, L.A., Galvin, A.B., Hamilton, D.C., Collier, M.R.: J. Geophys. Res. 105, 23107 (2000)

    Article  ADS  Google Scholar 

  • Christon, S.P.: Icarus 71, 448 (1987)

    Article  ADS  Google Scholar 

  • Collier, M.R., Hamilton, D.C.: Geophys. Res. Lett. 22(3), 303 (1995)

    Article  ADS  Google Scholar 

  • Decker, R.B., Krimigis, S.M.: Adv. Space Res. 32, 597 (2003)

    Article  ADS  Google Scholar 

  • Decker, R.B., Krimigis, S.M., Roelof, E.C., Hill, M.E., Armstrong, T.P., Gloeckler, G., Hamilton, D.C., Lanzerotti, L.J.: Science 309, 2020 (2005)

    Article  ADS  Google Scholar 

  • Dialynas, K., Krimigis, S.M., Mitchell, D.G., Hamilton, D.C., Krupp, N., Brandt, P.C.: J. Geophys. Res. 114, A01212 (2009)

    Article  ADS  Google Scholar 

  • Elliott, H.A., McComas, D.J., Valek, P., Nicolaou, G., Weidner, S., Livadiotis, G.: Astrophys. J. Suppl Ser. 223(2) (2016)

  • Elrod, M.K., Tseng, W.-L., Wilson, R.J., Johnson, R.E.: J. Geophys. Res. 117, A03207 (2012)

    Article  ADS  Google Scholar 

  • Eslami, P., Mottaghizadeh, M., Pakzad, H.R.: Phys. Plasmas 18, 102303 (2011)

    Article  ADS  Google Scholar 

  • Fisk, L.A., Gloeckler, G.: J. Geophys. Res. 119, 8733–8749 (2014)

    Article  Google Scholar 

  • Hasegawa, A., Mima, K., Duong-van, M.: Phys. Rev. Lett. 54(24), 2608 (1985)

    Article  ADS  Google Scholar 

  • Hammond, C.M., Feldman, W.C., Phillips, J.L., Goldstein, B.E., Balogh, A.: J. Geophys. Res. 100, 7881 (1996)

    Article  ADS  Google Scholar 

  • Heerikhuisen, J., Pogorelov, N.V., Florinski, V., Zank, G.P., Le Roux, J.A.: Astrophys. J. 682, 679 (2008)

    Article  ADS  Google Scholar 

  • Heerikhuisen, J., Pogorelov, N.V., Zank, G.P., Crew, G.B., Frisch, P.C., Funsten, H.O., Janzen, P.H., McComas, D.J., Reisenfeld, D.B., Schwadron, N.A.: Astrophys. J. 708(2), L126 (2010)

    Article  ADS  Google Scholar 

  • Heerikhuisen, J., Zirnstein, E., Pogorelov, N.: J. Geophys. Res. 120, 1516–1525 (2015)

    Article  Google Scholar 

  • Hellberg, M.A., Mace, R.L., Baluku, T.K., Kourakis, I., Saini, N.S.: Phys. Plasmas 16, 094701 (2009)

    Article  ADS  Google Scholar 

  • Jurac, S., McGrath, M.A., Johnson, R.E., Richardson, J.D., Vasyliũnas, V.M., Eviatar, A.: Geophys. Res. Lett. 29, 2172 (2002)

    ADS  Google Scholar 

  • Kletzing, C.A., Scudder, J.D., Dors, E.E., Curto, C.: J. Geophys. Res. 108, 1360 (2003)

    Article  Google Scholar 

  • Kourakis, I., Sultana, S., Hellberg, M.A.: Plasma Phys. Control. Fusion 54, 124001 (2012)

    Article  ADS  Google Scholar 

  • Le Roux, J.A., Webb, G.M., Shalchi, A., Zank, G.P.: Astrophys. J. 716, 671 (2010)

    Article  ADS  Google Scholar 

  • Leubner, M.P.: Astrophys. Space Sci. 282, 573 (2002)

    Article  ADS  Google Scholar 

  • Livadiotis, G.: J. Math. Chem. 45, 930–939 (2009)

    Article  MathSciNet  Google Scholar 

  • Livadiotis, G.: Entropy 16, 4290–4308 (2014)

    Article  ADS  Google Scholar 

  • Livadiotis, G.: J. Geophys. Res. 120, 1607–1619 (2015a)

    Article  Google Scholar 

  • Livadiotis, G.: J. Geophys. Res. 120, 880–903 (2015b)

    Article  Google Scholar 

  • Livadiotis, G.: Entropy 17, 2062–2081 (2015c)

    Article  ADS  MathSciNet  Google Scholar 

  • Livadiotis, G.: Physica A 445, 240–255 (2016a)

    Article  ADS  MathSciNet  Google Scholar 

  • Livadiotis, G.: Europhys. Lett. 113, 10003 (2016b)

    Article  ADS  Google Scholar 

  • Livadiotis, G., McComas, D.J.: J. Geophys. Res. 114, 11105 (2009)

    Article  Google Scholar 

  • Livadiotis, G., McComas, D.J.: Astrophys. J. 714, 971 (2010a)

    Article  ADS  Google Scholar 

  • Livadiotis, G., McComas, D.J.: Phys. Scr. 82, 035003 (2010b)

    Article  ADS  Google Scholar 

  • Livadiotis, G., McComas, D.J.: Astrophys. J. 738, 64 (2011a)

    Article  ADS  Google Scholar 

  • Livadiotis, G., McComas, D.J.: Astrophys. J. 741, 88 (2011b)

    Article  ADS  Google Scholar 

  • Livadiotis, G., McComas, D.J.: Astrophys. J. 749, 11 (2012)

    Article  ADS  Google Scholar 

  • Livadiotis, G., McComas, D.J.: Space Sci. Rev. 75, 183 (2013a)

    Article  ADS  Google Scholar 

  • Livadiotis, G., McComas, D.J.: J. Geophys. Res. 118, 2863 (2013b)

    Article  Google Scholar 

  • Livadiotis, G., McComas, D.J.: Entropy 15, 1118 (2013c)

    Article  ADS  Google Scholar 

  • Livadiotis, G., McComas, D.J., Dayeh, M.A., Funsten, H.O., Schwadron, N.A.: Astrophys. J. 734, 1 (2011)

    Article  ADS  Google Scholar 

  • Livadiotis, G., McComas, D.J., Randol, B.M., Funsten, H.O., Möbius, E.S., Schwadron, N.A., Dayeh, M.A., Zank, G.P., Frisch, P.C.: Astrophys. J. 751, 64 (2012)

    Article  ADS  Google Scholar 

  • Livadiotis, G., McComas, D.J., Schwadron, N.A., Funsten, H.O., Fuselier, S.A.: Astrophys. J. 762, 134 (2013)

    Article  ADS  Google Scholar 

  • Livi, R.J., Burch, J.L., Crary, F., Rymer, A.M., Mitchell, D.G., Persoon, A.M.: J. Geophys. Res. 119, 3683 (2014)

    Article  Google Scholar 

  • Liu, H.-F., Tanga, C.-J., Zhanga, X., Zhua, L.-M., Zhao, Y.: Adv. Space Res. 56, 2298–2304 (2015)

    Article  ADS  Google Scholar 

  • Maksimovic, M., Pierrard, V., Rilay, P.: Geophys. Res. Lett. 24, 1151–1154 (1997)

    Article  ADS  Google Scholar 

  • Maksimovic, M., Zouganelis, I., Chaufray, J.Y., Issautier, K., Scime, E.E., Littleton, J.E., Marsch, E., McComas, D.J., Salem, C., Lin, R.P., Elliott, H.: J. Geophys. Res. 110, A09104 (2005)

    Article  ADS  Google Scholar 

  • Mann, G., Classen, H.T., Keppler, E., Roelof, E.C.: Astron. Astrophys. 391, 749 (2002)

    Article  ADS  Google Scholar 

  • Marsch, E.: Living Rev. Sol. Phys. 3, 1 (2006)

    Article  ADS  Google Scholar 

  • Mauk, B.H., Mitchell, D.G., McEntire, R.W., Paranicas, C.P., Roelof, E.C., Williams, D.J., Krimigis, S.M., Lagg, A.: J. Geophys. Res. 109, A09S12 (2004)

    Article  ADS  Google Scholar 

  • McComas, D.J., Allegrini, F., Bagenal, F., Crary, F., Ebert, R.W., Elliott, H., Stern, A., Valek, P.: Science 318, 217 (2007)

    Article  ADS  Google Scholar 

  • Milovanov, A.V., Zelenyi, L.M.: Nonlinear Process. Geophys. 7, 211 (2000)

    Article  ADS  Google Scholar 

  • Nicolaou, G., McComas, D.J., Bagenal, F., Elliott, H.A.: J. Geophys. Res. 119, 3463 (2014)

    Article  Google Scholar 

  • Nicolaou, G., McComas, D.J., Bagenal, F., Elliott, H.A., Ebert, R.W.: Planet. Space Sci. 111, 116 (2015a)

    Article  ADS  Google Scholar 

  • Nicolaou, G., McComas, D.J., Bagenal, F., Elliott, H.A., Wilson, R.J.: Planet. Space Sci. 119, 222 (2015b)

    Article  ADS  Google Scholar 

  • Ogasawara, K., Angelopoulos, V., Dayeh, M.A., Fuselier, S.A., Livadiotis, G., McComas, D.J., McFadden, J.P.: J. Geophys. Res. 118, 3126 (2013)

    Article  Google Scholar 

  • Paschmann, G., Daly, P.W.: Methods for Multi-Spacecraft Data, vol. 1. ISSI Scientific Reports Series, vol. SR-001. ESA/ISSI, ??? (1998)

    Google Scholar 

  • Pierrard, V., Maksimovic, M., Lemaire, J.: J. Geophys. Res. 104, 17021–17032 (1999)

    Article  ADS  Google Scholar 

  • Pierrard, V., Lazar, M.: Sol. Phys. 267, 153 (2010)

    Article  ADS  Google Scholar 

  • Pierrard, V., Pieters, M.: J. Geophys. Res. 119, 9441–9455 (2015)

    Article  Google Scholar 

  • Pisarenko, N.F., Budnika, E.Y., Ermolaev, Y.I., Kirpichev, I.P., Lutsenko, V.N., Morozova, E.I., Antonova, E.E.: J. Atmos. Sol.-Terr. Phys. 64, 573–583 (2002)

    Article  ADS  Google Scholar 

  • Qureshi, M.N.S., Nasir, W., Masood, W., Yoon, P.H., Shah, H.A., Schwartz, S.J.: J. Geophys. Res. 119, 10059–10067 (2015)

    Article  Google Scholar 

  • Raadu, M.A., Shafiq, M.: Phys. Plasmas 14, 012105 (2007)

    Article  ADS  Google Scholar 

  • Randol, B.M., Christian, E.R.: J. Geophys. Res. 119, 7025–7037 (2014)

    Article  Google Scholar 

  • Richardson, J.D.: J. Geophys. Res. 92, 6133 (1987)

    Article  ADS  Google Scholar 

  • Richardson, J.D.: Planet. Space Sci. 50, 503 (2002)

    Article  ADS  Google Scholar 

  • Saito, S., Forme, F.R.E., Buchert, S.C., Nozawa, S., Fujii, R.: Ann. Geophys. 18, 1216–1223 (2000)

    Article  ADS  Google Scholar 

  • Schippers, P., Blanc, M., Andre, N., Dandouras, I., Lewis, G.R., Gilbert, L.K., Persoon, A.M., Krupp, N., Gurnett, D.A., Coates, A.J., Krimigis, S.M., Young, D.T., Dougherty, M.K.: J. Geophys. Res. 113, A07208 (2008)

    Article  ADS  Google Scholar 

  • Shizgal, B.D.: Astrophys. Space Sci. 312, 227 (2007)

    Article  ADS  Google Scholar 

  • Stepanova, M., Antonova, E.E.: J. Geophys. Res. 120, 3702–3714 (2015)

    Article  Google Scholar 

  • Štverák, Š., Maksimovic, M., Trávníček, P.M., Marsch, E., Fazakerley, A.N., Scime, E.E.: J. Geophys. Res. 114, A05104 (2009)

    ADS  Google Scholar 

  • Tribeche, M., Mayout, S., Amour, R.: Phys. Plasmas 16, 043706 (2009)

    Article  ADS  Google Scholar 

  • Tsallis, C.: J. Stat. Phys. 52, 479 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  • Tsallis, C.: Springer, New York (2009)

  • Tsallis, C., Mendes, R.S., Plastino, A.R.: Physica A 261, 534–554 (1998)

    Article  ADS  Google Scholar 

  • Varotsos, P.A., Sarlis, N.V., Skordas, E.S.: J. Geophys. Res. 119, 9192–9206 (2014)

    Article  Google Scholar 

  • Viñas, A.F., Moya, P.S., Navarro, R.E., Valdivia, J.A., Araneda, J.A., Muñoz, V.: J. Geophys. Res. 120, 3307–3317 (2015)

    Article  Google Scholar 

  • Wilson, R.J., Tokar, R.L., Henderson, M.G., Hill, T.W., Thomsen, M.F., Pontius, D.H.: J. Geophys. Res. 113, A12218 (2008)

    Article  ADS  Google Scholar 

  • Wilson, R.J., et al.: PDS User’s Guide for Cassini Plasma Spectrometer (CAPS), Planetary Data System (2012a). http://ppi.pds.nasa.gov/

  • Wilson, R.J., Delamere, P.A., Bagenal, F., Masters, A.: J. Geophys. Res. 117, A03212 (2012b)

    ADS  Google Scholar 

  • Wilson, R.J., Bagenal, F., Delamere, P.A., Desroche, M., Fleshman, B.L., Dols, V.: J. Geophys. Res. 118, 2122 (2013)

    Article  Google Scholar 

  • Yoon, P.H., Rhee, T., Ryu, C.M.: J. Geophys. Res. 111, A09106 (2006)

    ADS  Google Scholar 

  • Yoon, P.H.: Plasma Phys. 19, 052301 (2012)

    Article  Google Scholar 

  • Yoon, P.H.: J. Geophys. Res. Space Phys. 119, 7074–7087 (2014)

    Article  ADS  Google Scholar 

  • Zank, G.P., Heerikhuisen, J., Pogorelov, N.V., Burrows, R., McComas, D.J.: Astrophys. J. 708, 1092 (2010)

    Article  ADS  Google Scholar 

  • Zouganelis, I., Maksimovic, M., Meyer-Vernet, N., Lamy, H., Issautier, K.: Astrophys. J. 606, 542 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Nicolaou.

Appendix A: Energy at the spectrogram’s maximum

Appendix A: Energy at the spectrogram’s maximum

In the simplified case, where the instrument’s FOV is very narrow and its response is not a function of energy and direction, then Eq. (7) becomes

$$ C(E) \propto E^{2}f(E;\varOmega ). $$
(A.1)

In order to find the energy at the spectrogram’s maximum, we calculate the energy for which the first derivative of (A.1) is zero, \(\partial C(E)/\partial E = 0\), leading to

$$ \frac{\partial \ln f ( E;\varOmega )}{\partial \ln E} = - 2. $$
(A.2)

If the observed plasma is described by the kappa distribution, we substitute Eq. (8) and use Eq. (5) in Eq. (A.1) that gives the observed counts maximum, which now becomes the quadratic equation

$$\begin{aligned} &(\kappa - 1)E_{\max} - (\kappa - 3)\cos \omega \sqrt{E_{0}} \sqrt{E_{\max}} \\ &\quad{}- 2\biggl[\biggl(\kappa - \frac{3}{2} \biggr)k_{\mathrm{B}}T - E_{0}\biggr] = 0. \end{aligned}$$
(A.3)

For small bulk energies, i.e., \(E_{0} \ll (\kappa - \frac{3}{2})k_{\mathrm{B}}T\), \(E_{0} \ll E_{\max}\), the maximum is given by \(E_{\max} \cong 2k_{\mathrm{B}}T(\kappa - \frac{3}{2})/(\kappa - 1)\). If we model the instrument’s response assuming a Maxwell distribution, we obtain the above again Eq. (A.2) but for \(\kappa \rightarrow \infty\), i.e.,

$$ E_{\max} - \cos \omega \sqrt{E_{0}} \sqrt{E_{\max}} - 2k_{\mathrm{B}}T = 0 $$
(A.4)

and for small bulk energies, the maximum is given by \(E_{\max} \cong 2k_{\mathrm{B}}T\). Even in this simplified case which we demonstrate here, the location of the spectrogram’s peak varies as a function of all the plasma parameters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicolaou, G., Livadiotis, G. Misestimation of temperature when applying Maxwellian distributions to space plasmas described by kappa distributions. Astrophys Space Sci 361, 359 (2016). https://doi.org/10.1007/s10509-016-2949-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-016-2949-z

Keywords

Navigation