Skip to main content
Log in

Planet formation around M-dwarfs: the moving snow line and super-Earths

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Planets result from a series of processes within a circumstellar disk. Evidence comes from the near planar orbits in the Solar System and other planetary systems, observations of newly formed disks around young stars, and debris disks around main-sequence stars. As planet-hunting techniques improve, we approach the ability to detect systems like the Solar System, and place ourselves in context with planetary systems in general. Along the way, new classes of planets with unexpected characteristics are discovered. One of the most recent classes contains super Earth-mass planets orbiting a few AU from low-mass stars. In this contribution, we outline a semi-analytic model for planet formation during the pre-main sequence contraction phase of a low-mass star. As the star contracts, the “snow line”, which separates regions of rocky planet formation from regions of icy planet formation, moves inward. This process enables rapid formation of icy protoplanets that collide and merge into super-Earths before the star reaches the main sequence. The masses and orbits of these super-Earths are consistent with super-Earths detected in recent microlensing experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asplund, M., Grevesse, N., Sauval, A.J.: The solar chemical composition. In: Barnes, T.G. III, Bash, F.N. (eds.) Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis. Astronomical Society of the Pacific Conference Series, vol. 336, p. 25 (2005)

  • Beaulieu, J.P., et al.: Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature 439, 437–440 (2006). doi:10.1038/nature04441

    Article  ADS  Google Scholar 

  • Boss, A.P.: Rapid formation of super-Earths around M dwarf stars. Astrophys. J. 644, L79–L82 (2006). doi:10.1086/505533

    Article  ADS  Google Scholar 

  • Dullemond, C.P., Dominik, C.: Dust coagulation in protoplanetary disks: a rapid depletion of small grains. Astron. Astrophys. 434, 971–986 (2005). doi:10.1051/0004-6361:20042080

    Article  MATH  ADS  Google Scholar 

  • Goldreich, P., Lithwick, Y., Sari, R.: Final stages of planet formation. Astrophys. J. 614, 497–507 (2004). doi:10.1086/423612

    Article  ADS  Google Scholar 

  • Gould, A., et al.: Microlens OGLE-2005-BLG-169 implies that cool Neptune-like planets are common. Astrophys. J. 644, L37–L40 (2006). doi:10.1086/505421

    Article  ADS  Google Scholar 

  • Haisch, K.E. Jr., Lada, E.A., Lada, C.J.: A near-infrared L-band survey of the young embedded cluster NGC 2024. Astron. J. 120, 1396–1409 (2000). doi:10.1086/301521

    Article  ADS  Google Scholar 

  • Hayashi, C.: Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981)

    Article  ADS  Google Scholar 

  • Ida, S., Lin, D.N.C.: Toward a deterministic model of planetary formation. III. Mass distribution of short-period planets around stars of various masses. Astrophys. J. 626, 1045–1060 (2005). doi:10.1086/429953

    Article  ADS  Google Scholar 

  • Kennedy, G.M., Kenyon, S.J., Bromley, B.C.: Planet formation around low-mass stars: the moving snow line and super-Earths. Astrophys. J. 650, L139–L142 (2006). doi:10.1086/508882

    Article  ADS  Google Scholar 

  • Kenyon, S.J., Bromley, B.C.: Terrestrial planet formation. I. The transition from oligarchic growth to chaotic growth. Astron. J. 131, 1837–1850 (2006). doi:10.1086/499807

    Article  ADS  Google Scholar 

  • Kenyon, S.J., Hartmann, L.: Spectral energy distributions of T Tauri stars—disk flaring and limits on accretion. Astrophys. J. 323, 714–733 (1987). doi:10.1086/165866

    Article  ADS  Google Scholar 

  • Kokubo, E., Ida, S.: Oligarchic growth of protoplanets. Icarus 131, 171–178 (1998). doi:10.1006/icar.1997.5840

    Article  ADS  Google Scholar 

  • Küppers, M., et al.: A large dust/ice ratio in the nucleus of comet 9P/Tempel 1. Nature 437, 987–990 (2005). doi:10.1038/nature04236

    Article  ADS  Google Scholar 

  • Laughlin, G., Bodenheimer, P., Adams, F.C.: The core accretion model predicts few jovian-mass planets orbiting red dwarfs. Astrophys. J. 612, L73–L76 (2004). doi:10.1086/424384

    Article  ADS  Google Scholar 

  • Lissauer, J.J.: Planet formation. Annu. Rev. Astron. Astrophys. 31, 129–174 (1993). doi:10.1146/annurev.aa.31.090193.001021

    Article  ADS  Google Scholar 

  • Natta, A., Grinin, V., Mannings, V.: Properties and evolution of disks around pre-main-sequence stars of intermediate mass. In: Protostars and Planets IV, p. 559 (2000)

  • Papaloizou, J.C.B., Nelson, R.P., Kley, W., Masset, F.S., Artymowicz, P.: Disk-planet interactions during planet formation. In: Reipurth, B., Jewitt, D., Keil, K. (eds.) Protostars and Planets V, pp. 655–668 (2007)

  • Plavchan, P., Jura, M., Lipscy, S.J.: Where are the M dwarf disks older than 10 million years? Astrophys. J. 631, 1161–1169 (2005). doi:10.1086/432568

    Article  ADS  Google Scholar 

  • Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y.: Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996). doi:10.1006/icar.1996.0190

    Article  ADS  Google Scholar 

  • Safronov, V.S.: Evoliutsiia doplanetnogo oblaka (1969)

  • Siess, L., Dufour, E., Forestini, M.: An internet server for pre-main sequence tracks of low- and intermediate-mass stars. Astron. Astrophys. 358, 593–599 (2000)

    ADS  Google Scholar 

  • Tanaka, H., Takeuchi, T., Ward, W.R.: Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and lindblad torques and planet migration. Astrophys. J. 565, 1257–1274 (2002). doi:10.1086/324713

    Article  ADS  Google Scholar 

  • Weidenschilling, S.J.: Dust to planetesimals—settling and coagulation in the solar nebula. Icarus 44, 172–189 (1980). doi:10.1016/0019-1035(80)90064-0

    Article  ADS  Google Scholar 

  • Wetherill, G.W., Stewart, G.R.: Accumulation of a swarm of small planetesimals. Icarus 77, 330–357 (1989). doi:10.1016/0019-1035(89)90093-6

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant M. Kennedy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennedy, G.M., Kenyon, S.J. & Bromley, B.C. Planet formation around M-dwarfs: the moving snow line and super-Earths. Astrophys Space Sci 311, 9–13 (2007). https://doi.org/10.1007/s10509-007-9574-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-007-9574-9

Keywords

Navigation