Skip to main content
Log in

Reduction of Substituted p-Benzoquinones by FeII Near Neutral pH

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

The oxidation of dihydroxyaromatics to benzoquinones by FeIII (hydr)oxides is important in respiratory electron shuttling by microorganisms and has been extensively studied. Prior publications have noted that the Gibbs Free Energy (ΔG) for the forward reaction is sensitive to dihydroxyaromatic structure, pH, and concentrations of reactants and products. Here, we address the back reaction, benzoquinone reduction by FeII. Rates markedly increase with increasing pH, in accord with increases in ΔG. Ring substituents that raise the potential of the p-benzoquinone/hydroquinone half reaction raise reaction rates: –OCH3 < –CH3 < –C6H5 < –H < –Cl. p-Naphthoquinone, with a reduction potential lower than the five substituted p-benzoquinones just listed, yields the lowest reaction rates. The complexity of the reaction is reflected in lag periods and less-pronounced S-shaped time course curves. Benzoquinone reduction by FeII may be an important link in networks of electron transport taking place in suboxic and anoxic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alegria AE, Lopez M, Guevara N (1996) Thermodynamics of semiquinone disproportionation in aqueous buffer. J Chem Soc Faraday Trans 92:4965–4968

    Article  Google Scholar 

  • Amonette JE, Workman DJ, Kennedy DW, Fruchter JS, Gorby YA (2000) Dechlorination of carbon tetrachloride by Fe(II) associated with goethite. Environ Sci Technol 34:4606–4613

    Article  Google Scholar 

  • Arnold RG, Olson TM, Hoffmann MR (1986) Kinetics and mechanism of dissimilative Fe(III) reduction by Pseudomonas sp. 200. Biotechnol Bioeng 28:1657–1671

    Article  Google Scholar 

  • Baxendale JH, Hardy HR (1955) Kinetics and equilibria in solutions containing ferrous ion, ferric ion, and some substituted hydroquinones and Quinones. Trans Farad Soc 50:808–814

    Article  Google Scholar 

  • Baxendale JH, Hardy HR, Sutcliffe LH (1951) Kinetics and equilibria in the system ferrous ion + ferric ion + hydroquinone. Trans Farad Soc 47:963–973

    Article  Google Scholar 

  • Bespalov VA, Zhulin IB, Taylor BL (1996) Behavioral responses of Escherichia coli to changes in redox potential. Proc Natl Acad Sci USA 93:10084–10089

    Article  Google Scholar 

  • Buerge IJ, Hug SJ (1998) Influence of organic ligands on chromium(VI) reduction by iron(II). Environ Sci Technol 32:2092–2099

    Google Scholar 

  • Cervantes FJ, Duong-Dac T, Roest K, Akkermans ADL, Lettinga G, Field JA (2003) Enrichment and immobilization of quinone-respiring bacteria in anaerobic granular sludge. Water Sci Technol 48:9–16

    Google Scholar 

  • Chang M, Netzly DH, Butler LG, Lynn DG (1986) Chemical regulation of distance: characterization of the first natural host germination stimulant for Striga asiatica. J Am Chem Soc 108:7858–7860

    Article  Google Scholar 

  • Coates JD, Ellis DJ, Blunt-Harris EL, Gaw CV, Roden EE, Lovley DR (1998) Recovery of humic-reducing bacteria from a diversity of environments. Appl Environ Microbiol 64:1504–1509

    Google Scholar 

  • Cory RM, McKnight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39:8142–8149

    Article  Google Scholar 

  • Fimmen RL, Cory RM, Chin Y-P, Trouts TD, McKnight DM (2007) Probing the oxidation-reduction properties of terestrially and microbially derived dissolved organic matter. Geochim Cosmochim Acta 71:3003–3015

    Article  Google Scholar 

  • Fukuzumi S, Ishikawa K, Hironaka K, Tanaka T (1987) Acid catalysis in thermal and photoinduced electron-transfer reactions. J Chem Soc Perkin Trans 2:751–760

    Google Scholar 

  • Gonzalez VM, Kazimir J, Nimbal C, Weston LA, Cheniae GM (1997) Inhibition of a Photosystem II electron transfer reaction by the natural product sorgoleone. J Agric Food Chem 45:1415–1421

    Article  Google Scholar 

  • Good NE, Izawa S (1972) Hydrogen ion buffers. Meth Enzymol 24:53–68

    Article  Google Scholar 

  • Good NE, Winget GD, Winter W, Connolly TN, Izawa S, Singh RMM (1966) Hydrogen ion buffers for biological research. Biochemistry 5:467–477

    Article  Google Scholar 

  • Haas JR, DiChristina TJ (2002) Effects of Fe(III) chemical speciation on dissimilatory Fe(III) reduction by Shewanella putrefaciens. Environ Sci Technol 36:373–380

    Article  Google Scholar 

  • Hejl AM, Koster KL (2004) Juglone disrupts root plasma membrane H+-ATPase activity and impairs water uptake, root respiration, and growth in soybean (Glycine max) and corn (Zea mays). J Chem Ecol 30:453–471

    Article  Google Scholar 

  • Hernandez ME, Kappler A, Newman DK (2004) Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl Environ Microbiol 70:921–928

    Article  Google Scholar 

  • IUPAC (1997) Compendium of chemical terminology, 2nd edn. Compiled by McNaught AD, Wilkinson A. Blackwell, Oxford

  • Jiang J, Kappler A (2008) Kinetics of microbial and chemical reduction of humic substances: implications for electron shuttling. Environ Sci Technol 42:3563–3569

    Article  Google Scholar 

  • Johnson HA, Tebo BM (2008) In vitro studies indicate a quinone is involved in bacterial Mn(II) oxidation. Arch Microbiol 189:59–69

    Article  Google Scholar 

  • King DW, Farlow R (2000) Role of carbonate speciation on the oxidation of Fe(II) by H2O2. Mar Chem 70:201–209

    Google Scholar 

  • Klapper L, McKnight DM, Fulton JR, Blunt-Harris EL, Nevin KP, Lovley DR, Hatcher PG (2002) Fulvic acid oxidation state detection using fluorescence spectroscopy. Environ Sci Technol 36:3170–3175

    Article  Google Scholar 

  • Klausen J, Troeber SP, Haderlein SB, Schwarzenbach RP (1995) Reduction of substituted nitrobenzenes by Fe(II) in aqueous mineral suspensions. Environ Sci Technol 29:2396–2404

    Article  Google Scholar 

  • Lies DP, Hernandez ME, Kappler A, Mielke RE, Gralnick JA, Newman DK (2005) Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl Environ Microbiol 71:4414–4426

    Article  Google Scholar 

  • Linert W, Herlinger E, Jameson RF (1993) A kinetic study of the anaerobic reactions between adrenaline and iron(III). J Chem Soc Perkin Trans I 2:2435–2439

    Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448

    Article  Google Scholar 

  • Lovley DR, Fraga JL, Blunt-Harris EL, Hayes LA, Phillips EJP, Coates JD (1998) Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim Hydrobiol 26:152–157

    Article  Google Scholar 

  • Lovley DR, Fraga JL, Coates JD, Blunt-Harris EL (1999) Humics as an electron donor for anaerobic respiration. Environ Microbiol 1:89–98

    Article  Google Scholar 

  • Majzlan J, Navrotsky A, Schwertmann U (2004) Thermodynamics of iron oxides: part III. Enthalpies of formation and stability of ferrihydrite (Fe(OH)3), schwertmannite (FeO(OH)3/4(SO4)1/8) and ε-Fe2O3. Geochim Cosmochim Acta 68:1049–1059

    Article  Google Scholar 

  • Martell AE, Smith RM, Motekaitis RJ (2004) NIST critically selected stability constants of metal complexes, version 8.0, NIST Standard Database 46. NIST, Gaithersburg, MD

    Google Scholar 

  • Mentasti E, Pelizzetti E, Saini G (1973) Reactions between iron (III) and catechol (o-dihydroxybenzene). Part II. Equilibria and kinetics of the redox reaction in aqueous acid solution. J Chem Soc Dalton Trans (23):2609–2614

  • Morel FMM, Hering JG (1993) Principles and applications of aquatic chemistry. Wiley, New York

    Google Scholar 

  • Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. Nature 405:94–97

    Article  Google Scholar 

  • Nurmi JT, Tratnyek PG (2002) Electrochemical properties of natural organic matter (NOM), fractions of NOM, and biogeochemical electron shuttles. Environ Sci Technol 36:617–624

    Article  Google Scholar 

  • Paul A, Stosse R, Zehl A, Zwirnmann E, Vogt RD, Steinberg CEW (2006) Nature and abundance of organic radicals in natural organic matter: effect of pH and irradiation. Environ Sci Technol 40:5897–5903

    Article  Google Scholar 

  • Pecher K, Haderlein SB, Schwarzenbach RP (2002) Reduction of polyhalogenated methanes by surface-bound Fe(II) in aqueous suspensions of iron oxides. Environ Sci Technol 36:1734–1741

    Article  Google Scholar 

  • Pezzella A, d’Ischia M, Napolitano A, Misuraca G, Prota G (1997) Iron-mediated generation of the neurotoxin 6-hydroxydopamine quinone by reaction of fatty acid hydroperoxides with dopamine: a possible contributory mechanism for neuronal degeneration in Parkinson’s Disease. J Med Chem 40:2211–2216

    Article  Google Scholar 

  • Porret D (1934) Oxidation of ferrous sulfate by quinone and the reverse reaction. Helv Chim Acta 17:703–716

    Article  Google Scholar 

  • Purcell KF, Kotz JC (1977) Inorganic chemistry. W.B. Saunders, Philadelphia

    Google Scholar 

  • Roginsky VA, Pisarenko LM, Bors W, Michel C (1999) The kinetics and thermodynamics of quinone-semiquinone-hydroquinone systems under physiological conditions. J Chem Soc Perkin Trans 2:871–876

    Google Scholar 

  • Schwarzenbach RP, Stierli R, Lanz K, Zeyer J (1990) Quinone and iron porphyrin mediated reduction of nitroaromatic compounds in homogeneous aqueous solution. Environ Sci Technol 24:1566–1574

    Article  Google Scholar 

  • Scott DT, McKnight DM, Blunt-Harris EL, Kolesar SE, Lovley DR (1998) Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ Sci Technol 32:2984–2989

    Article  Google Scholar 

  • Senesi N, Steelink C (1989) Application of ESR spectroscopy to the study of humic substances, chap 13. In: Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (eds) Humic substances II. Wiley, NY, pp 373–378

    Google Scholar 

  • Steenken S, Neta P (2003) Transient phenoxy radicals: formation and properties in aqueous solutions. In: Rappoport Z (ed) The chemistry of phenols. Wiley, NY, pp 1107–1152

    Chapter  Google Scholar 

  • Strathmann TJ, Stone AT (2002) Reduction of oxamyl and related pesticides by FeII: influence of organic ligands and natural organic matter. Environ Sci Technol 36:5172–5183

    Article  Google Scholar 

  • Strathmann TJ, Stone AT (2003) Mineral surface catalysis of reactions between FeII and oxime carbamate pesticides. Geochim Cosmochim Acta 67:2775–2791

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry. Chemical equilibria and rates in natural waters. Wiley, NY

    Google Scholar 

  • Thorn KA, Pettigrew PJ, Goldenberg WS, Weber EJ (1996) Covalent binding of aniline to humic substances. 2. 15 N NMR studies of nucleophilic addition reactions. Environ Sci Technol 30:2764–2775

    Article  Google Scholar 

  • Tossell JA (2009) Quinone-hydroquinone complexes as model components of humic acids: theoretical studies of their structure, stability and visible–UV spectra. Geochim Cosmochim Acta 73:2023–2033

    Article  Google Scholar 

  • Uchimiya M, Stone AT (2006) Redox reactions between iron and quinones: thermodynamic constraints. Geochim Cosmochim Acta 70:1388–1401

    Article  Google Scholar 

  • Vasudevan D, Stone AT (1998) Adsorption of 4-nitrocatechol, 4-nitro-2-aminophenol, and 4-nitro-1, 2-phenylenediamine at the metal (hydr)oxide/water interface: effect of metal (hydr)oxide properties. J Colloid Interface Sci 202:1–19

    Article  Google Scholar 

  • von Jagow G, Link TA (1986) Use of specific inhibitors on the mitochondrial bc1 complex. Meth Enzymol 126:253–271

    Article  Google Scholar 

  • Wardman P (1989) Reduction potentials of one-electron couples involving free radicals in aqueous solution. J Phys Chem Ref Data 18:1637–1756

    Google Scholar 

  • Wehrli B (1990) Redox reactions of metal ions at mineral surfaces. In: Stumm W (ed) Aquatic chemical kinetics. Wiley, NY, pp 311–336

    Google Scholar 

  • Wehrli B, Sulzberger B, Stumm W (1989) Redox processes catalyzed by hydrous oxide surfaces. Chem Geol 78:167–179

    Google Scholar 

Download references

Acknowledgments

This project was supported by the National Research Initiative of the USDA Cooperative State Research, Education, and Extension Service, grant number 2002-35107-11572.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan T. Stone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchimiya, M., Stone, A.T. Reduction of Substituted p-Benzoquinones by FeII Near Neutral pH. Aquat Geochem 16, 173–188 (2010). https://doi.org/10.1007/s10498-009-9077-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-009-9077-0

Keywords

Navigation