Skip to main content

Advertisement

Log in

Inhibition of VDAC1 prevents Ca2+-mediated oxidative stress and apoptosis induced by 5-aminolevulinic acid mediated sonodynamic therapy in THP-1 macrophages

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Ultrasound combined with endogenous protoporphyrin IX derived from 5-aminolevulinic acid (ALA-SDT) is known to induce apoptosis in multiple cancer cells and macrophages. Persistent retention of macrophages in the plaque has been implicated in the pathophysiology and progression of atherosclerosis. Here we investigated the effects of inhibition of voltage-dependent anion channel 1 (VDAC1) on ALA-SDT-induced THP-1 macrophages apoptosis. Cells were pre-treated with VDAC1 inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) disodium salt for 1 h or downregulated VDAC1 expression by small interfering RNA and exposed to ultrasound. Cell viability was assessed by MTT assay, and cell apoptosis along with necrosis was evaluated by Hoechst 33342/propidium iodide staining and flow cytometry. Levels of cytochrome c release was assessed by confocal microscope and Western blot. The levels of full length caspases, caspase activation, and VDAC isoforms were analyzed by Western blot. Intracellular reactive oxygen species generation, mitochondrial membrane permeability, and intracellular Ca2+ [Ca2+]i levels were measured with fluorescent probes. We confirmed that the pharmacological inhibition of VDAC1 by DIDS notably prevented ALA-SDT-induced cell apoptosis in THP-1 macrophages. Additionally, DIDS significantly inhibited intracellular ROS generation and apoptotic biochemical changes such as inner mitochondrial membrane permeabilization, loss of mitochondrial membrane potential, cytochrome c release and activation of caspase-3 and caspase-9. Moreover, ALA-SDT elevated the [Ca2+]i levels and it was also notably reduced by DIDS. Furthermore, both of intracellular ROS generation and cell apoptosis were predominately inhibited by Ca2+ chelating reagent BAPTA-AM. Intriguingly, ALA-treatment markedly augmented VDAC1 protein levels exclusively, and the downregulation of VDAC1 expression by specific siRNA also significantly abolished cell apoptosis. Altogether, these results suggest that VDAC1 plays a crucial role in ALA-SDT-induced THP-1 macrophages apoptosis, and targeting VDAC1 is a potential way regulating macrophages apoptosis, a finding that may be relevant to therapeutic strategies against atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ALA:

5 aminolevulinic acid

BAPTA-AM:

1,2-bis (2-aminophenoxy) ethane-N,N,N’,N’-tetraaceti acid tetrakis (acetoxymethylester)

DIDS:

4,4′-diisothiocyanostilbene-2,2′-disulfonic acid

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

IMM:

Inner mitochondrial membrane

NAC:

N-acetyl-l-cysteine

NAO:

Acridine orange 10-nonyl bromide (nonyl acridine orange)

PpIX:

Protoporphyrin IX

ROS:

Reactive oxygen species

SDT:

Sonodynamic therapy

THP-1:

A human acute monocytic leukemia cell line

VDAC1:

Voltage-dependent anion channel 1

References

  1. Yumita N, Nishigaki R, Umemura K, Umemura S (1989) Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound. Jpn J Cancer Res 80:219–222

    Article  CAS  PubMed  Google Scholar 

  2. Trendowski M (2013) The promise of sonodynamic therapy. Cancer Metastasis Rev. doi:10.1007/s10555-013-9461-5

    Google Scholar 

  3. Gao Q, Wang F, Guo S, Li J, Zhu B, Cheng J, Jin Y, Li B, Wang H, Shi S, Zhang Z, Cao W, Tian Y (2011) Sonodynamic effect of an anti-inflammatory agent–emodin on macrophages. Ultrasound Med Biol 37:1478–1485

    Article  PubMed  Google Scholar 

  4. Guo S, Sun X, Cheng J, Xu H, Dan J, Shen J, Zhou Q, Zhang Y, Meng L, Cao W, Tian Y (2013) Apoptosis of THP-1 macrophages induced by protoporphyrin IX-mediated sonodynamic therapy. Int J Nanomed 8:2239–2246

    Google Scholar 

  5. Zheng L, Sun X, Zhu X, Lv F, Zhong Z, Zhang F, Guo W, Cao W, Yang L, Tian Y (2014) Apoptosis of THP-1 derived macrophages induced by sonodynamic therapy using a new sonosensitizer hydroxyl acetylated curcumin. PLoS ONE 9:e93133

    Article  PubMed Central  PubMed  Google Scholar 

  6. Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13:709–721

    Article  CAS  PubMed  Google Scholar 

  7. Libby P, Lichtman AH, Hansson GK (2013) Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity 38:1092–1104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Weber C, Noels H (2011) Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 17:1410–1422

    Article  CAS  PubMed  Google Scholar 

  9. De Meyer I, Martinet W, De Meyer GR (2012) Therapeutic strategies to deplete macrophages in atherosclerotic plaques. Br J Clin Pharmacol 74:246–263

    Article  PubMed Central  PubMed  Google Scholar 

  10. Peng C, Li Y, Liang H, Cheng J, Li Q, Sun X, Li Z, Wang F, Guo Y, Tian Z, Yang L, Tian Y, Zhang Z, Cao W (2011) Detection and photodynamic therapy of inflamed atherosclerotic plaques in the carotid artery of rabbits. J Photochem Photobiol, B 102:26–31

    Article  CAS  Google Scholar 

  11. Nielsen KP, Juzeniene A, Juzenas P, Stamnes K, Stamnes JJ, Moan J (2005) Choice of optimal wavelength for PDT: the significance of oxygen depletion. Photochem Photobiol 81:1190–1194

    Article  CAS  PubMed  Google Scholar 

  12. Cheng J, Sun X, Guo S, Cao W, Chen H, Jin Y, Li B, Li Q, Wang H, Wang Z, Zhou Q, Wang P, Zhang Z, Tian Y (2013) Effects of 5-aminolevulinic acid-mediated sonodynamic therapy on macrophages. Int J Nanomed 8:669–676

    Article  Google Scholar 

  13. Wang H, Yang Y, Chen H, Dan J, Cheng J, Guo S, Sun X, Wang W, Ai Y, Li S, Li Z, Peng L, Tian Z, Yang L, Wu J, Zhong X, Zhou Q, Wang P, Zhang Z, Cao W, Tian Y (2014) The predominant pathway of apoptosis in THP-1 macrophage-derived foam cells induced by 5-aminolevulinic acid-mediated sonodynamic therapy is the mitochondria-caspase pathway despite the participation of endoplasmic reticulum stress. Cell Physiol Biochem 33:1789–1801

    Article  CAS  PubMed  Google Scholar 

  14. Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N (2010) VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 31:227–285

    Article  CAS  PubMed  Google Scholar 

  15. Shoshan-Barmatz V, Israelson A, Brdiczka D, Sheu SS (2006) The voltage-dependent anion channel (VDAC): function in intracellular signalling, cell life and cell death. Curr Pharm Des 12:2249–2270

    Article  CAS  PubMed  Google Scholar 

  16. Saks V, Guzun R, Timohhina N, Tepp K, Varikmaa M, Monge C, Beraud N, Kaambre T, Kuznetsov A, Kadaja L, Eimre M, Seppet E (2010) Structure-function relationships in feedback regulation of energy fluxes in vivo in health and disease: mitochondrial interactosome. Biochim Biophys Acta 1797:678–697

    Article  CAS  PubMed  Google Scholar 

  17. Tsujimoto Y, Shimizu S (2002) The voltage-dependent anion channel: an essential player in apoptosis. Biochimie 84:187–193

    Article  CAS  PubMed  Google Scholar 

  18. Verma A, Nye JS, Snyder SH (1987) Porphyrins are endogenous ligands for the mitochondrial (peripheral-type) benzodiazepine receptor. Proc Natl Acad Sci U S A 84:2256–2260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Krammer B, Plaetzer K (2008) ALA and its clinical impact, from bench to bedside. Photochem Photobiol Sci 7:283–289

    Article  CAS  PubMed  Google Scholar 

  20. Song W, Cui H, Zhang R, Zheng J, Cao W (2011) Apoptosis of SAS cells induced by sonodynamic therapy using 5-aminolevulinic acid sonosensitizer. Anticancer Res 31:39–45

    CAS  PubMed  Google Scholar 

  21. De Stefani D, Bononi A, Romagnoli A, Messina A, De Pinto V, Pinton P, Rizzuto R (2012) VDAC1 selectively transfers apoptotic Ca2 + signals to mitochondria. Cell Death Differ 19:267–273

    Article  PubMed Central  PubMed  Google Scholar 

  22. Reina S, Magri A, Lolicato M, Guarino F, Impellizzeri A, Maier E, Benz R, Ceccarelli M, De Pinto V, Messina A (2013) Deletion of beta-strands 9 and 10 converts VDAC1 voltage-dependence in an asymmetrical process. Biochim Biophys Acta 1827:793–805

    Article  CAS  PubMed  Google Scholar 

  23. Veenman L, Papadopoulos V, Gavish M (2007) Channel-like functions of the 18-kDa translocator protein (TSPO): regulation of apoptosis and steroidogenesis as part of the host-defense response. Curr Pharm Des 13:2385–2405

    Article  CAS  PubMed  Google Scholar 

  24. Veenman L, Shandalov Y, Gavish M (2008) VDAC activation by the 18 kDa translocator protein (TSPO), implications for apoptosis. J Bioenerg Biomembr 40:199–205

    Article  CAS  PubMed  Google Scholar 

  25. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  26. Chandra D, Liu JW, Tang DG (2002) Early mitochondrial activation and cytochrome c up-regulation during apoptosis. J Biol Chem 277:50842–50854

    Article  CAS  PubMed  Google Scholar 

  27. Poncet D, Boya P, Metivier D, Zamzami N, Kroemer G (2003) Cytofluorometric quantitation of apoptosis-driven inner mitochondrial membrane permeabilization. Apoptosis 8:521–530

    Article  CAS  PubMed  Google Scholar 

  28. Merritt JE, McCarthy SA, Davies MP, Moores KE (1990) Use of fluo-3 to measure cytosolic Ca2 + in platelets and neutrophils. Loading cells with the dye, calibration of traces, measurements in the presence of plasma, and buffering of cytosolic Ca2+. Biochem J 269:513–519

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Kuang CY, Yu Y, Guo RW, Qian DH, Wang K, Den MY, Shi YK, Huang L (2010) Silencing stromal interaction molecule 1 by RNA interference inhibits the proliferation and migration of endothelial progenitor cells. Biochem Biophys Res Commun 398:315–320

    Article  CAS  PubMed  Google Scholar 

  30. Zhang D, Fang P, Jiang X, Nelson J, Moore JK, Kruger WD, Berretta RM, Houser SR, Yang X, Wang H (2012) Severe hyperhomocysteinemia promotes bone marrow-derived and resident inflammatory monocyte differentiation and atherosclerosis in LDLr/CBS-deficient mice. Circ Res 111:37–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 8:115–128

    Article  CAS  PubMed  Google Scholar 

  32. Kim TH, Kim J, Kim Z, Huang RB, Wang RS (2012) Khz (fusion of Ganoderma lucidum and Polyporus umbellatus mycelia) induces apoptosis by increasing intracellular calcium levels and activating JNK and NADPH oxidase-dependent generation of reactive oxygen species. PLoS ONE 7:e46208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Kim JY, Yu SJ, Oh HJ, Lee JY, Kim Y, Sohn J (2011) Panaxydol induces apoptosis through an increased intracellular calcium level, activation of JNK and p38 MAPK and NADPH oxidase-dependent generation of reactive oxygen species. Apoptosis 16:347–358

    Article  CAS  PubMed  Google Scholar 

  34. Jiang N, Kham SK, Koh GS, Suang Lim JY, Ariffin H, Chew FT, Yeoh AE (2011) Identification of prognostic protein biomarkers in childhood acute lymphoblastic leukemia (ALL). J Proteomics 74:843–857

    Article  CAS  PubMed  Google Scholar 

  35. Keinan N, Pahima H, Ben-Hail D, Shoshan-Barmatz V (2013) The role of calcium in VDAC1 oligomerization and mitochondria-mediated apoptosis. Biochim Biophys Acta 1833:1745–1754

    Article  CAS  PubMed  Google Scholar 

  36. Keinan N, Tyomkin D, Shoshan-Barmatz V (2010) Oligomerization of the mitochondrial protein voltage-dependent anion channel is coupled to the induction of apoptosis. Mol Cell Biol 30:5698–5709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Zaid H, Abu-Hamad S, Israelson A, Nathan I, Shoshan-Barmatz V (2005) The voltage-dependent anion channel-1 modulates apoptotic cell death. Cell Death Differ 12:751–760

    Article  CAS  PubMed  Google Scholar 

  38. Tsuchiya S, Kobayashi Y, Goto Y, Okumura H, Nakae S, Konno T, Tada K (1982) Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res 42:1530–1536

    CAS  PubMed  Google Scholar 

  39. Schwende H, Fitzke E, Ambs P, Dieter P (1996) Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3. J Leukoc Biol 59:555–561

    CAS  PubMed  Google Scholar 

  40. Daigneault M, Preston JA, Marriott HM, Whyte MK, Dockrell DH (2010) The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS ONE 5:e8668

    Article  PubMed Central  PubMed  Google Scholar 

  41. Tsuru H, Shibaguchi H, Kuroki M, Yamashita Y (2012) Tumor growth inhibition by sonodynamic therapy using a novel sonosensitizer. Free Radic Biol Med 53:464–472

    Article  CAS  PubMed  Google Scholar 

  42. Wang X, Leung AW, Jiang Y, Yu H, Li X, Xu C (2012) Hypocrellin B-mediated sonodynamic action induces apoptosis of hepatocellular carcinoma cells. Ultrasonics 52:543–546

    Article  CAS  PubMed  Google Scholar 

  43. Schriewer JM, Peek CB, Bass J, Schumacker PT (2013) ROS-mediated PARP activity undermines mitochondrial function after permeability transition pore opening during myocardial ischemia-reperfusion. J Am Heart Assoc 2:e000159

    Article  PubMed Central  PubMed  Google Scholar 

  44. Zhang R, Ran HH, Cai LL, Zhu L, Sun JF, Peng L, Liu XJ, Zhang LN, Fang Z, Fan YY, Cui G (2014) Simulated microgravity-induced mitochondrial dysfunction in rat cerebral arteries. FASEB J 28(6): 2715–2724

  45. Lin CJ, Chen TH, Yang LY, Shih CM (2014) Resveratrol protects astrocytes against traumatic brain injury through inhibiting apoptotic and autophagic cell death. Cell Death Dis 5:e1147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ott M, Zhivotovsky B, Orrenius S (2007) Role of cardiolipin in cytochrome c release from mitochondria. Cell Death Differ 14:1243–1247

    Article  CAS  PubMed  Google Scholar 

  47. Shidoji Y, Hayashi K, Komura S, Ohishi N, Yagi K (1999) Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation. Biochem Biophys Res Commun 264:343–347

    Article  CAS  PubMed  Google Scholar 

  48. Huang Y, Liu L, Shi C, Huang J, Li G (2006) Electrochemical analysis of the effect of Ca2 + on cardiolipin-cytochrome c interaction. Biochim Biophys Acta 1760:1827–1830

    Article  CAS  PubMed  Google Scholar 

  49. Liu J, Weiss A, Durrant D, Chi NW, Lee RM (2004) The cardiolipin-binding domain of Bid affects mitochondrial respiration and enhances cytochrome c release. Apoptosis 9:533–541

    Article  CAS  PubMed  Google Scholar 

  50. Colombini M (2004) VDAC: the channel at the interface between mitochondria and the cytosol. Mol Cell Biochem 256–257:107–115

    Article  PubMed  Google Scholar 

  51. Li JH, Yue W, Huang Z, Chen ZQ, Zhan Q, Ren FB, Liu JY, Fu SB (2011) Calcium overload induces C6 rat glioma cell apoptosis in sonodynamic therapy. Int J Radiat Biol 87:1061–1066

    Article  CAS  PubMed  Google Scholar 

  52. Lv Y, Fang M, Zheng J, Yang B, Li H, Xiuzigao Z, Song W, Chen Y, Cao W (2012) Low-intensity ultrasound combined with 5-aminolevulinic acid administration in the treatment of human tongue squamous carcinoma. Cell Physiol Biochem 30:321–333

    Article  CAS  PubMed  Google Scholar 

  53. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281

    Article  PubMed Central  PubMed  Google Scholar 

  54. Grimm S (2012) The ER-mitochondria interface: the social network of cell death. Biochim Biophys Acta 1823:327–334

    Article  CAS  PubMed  Google Scholar 

  55. Shoshan-Barmatz V, Hadad N, Feng W, Shafir I, Orr I, Varsanyi M, Heilmeyer LM (1996) VDAC/porin is present in sarcoplasmic reticulum from skeletal muscle. FEBS Lett 386:205–210

    Article  CAS  PubMed  Google Scholar 

  56. Paillard M, Tubbs E, Thiebaut PA, Gomez L, Fauconnier J, Da Silva CC, Teixeira G, Mewton N, Belaidi E, Durand A, Abrial M, Lacampagne A, Rieusset J, Ovize M (2013) Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury. Circulation 128:1555–1565

    Article  CAS  PubMed  Google Scholar 

  57. Brenner C, Moulin M (2012) Physiological roles of the permeability transition pore. Circ Res 111:1237–1247

    Article  CAS  PubMed  Google Scholar 

  58. Tomasello F, Messina A, Lartigue L, Schembri L, Medina C, Reina S, Thoraval D, Crouzet M, Ichas F, De Pinto V, De Giorgi F (2009) Outer membrane VDAC1 controls permeability transition of the inner mitochondrial membrane in cellulo during stress-induced apoptosis. Cell Res 19:1363–1376

    Article  CAS  PubMed  Google Scholar 

  59. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–C833

    Article  CAS  PubMed  Google Scholar 

  60. Csordas G, Renken C, Varnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajnoczky G (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174:915–921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Bathori G, Csordas G, Garcia-Perez C, Davies E, Hajnoczky G (2006) Ca2 + -dependent control of the permeability properties of the mitochondrial outer membrane and voltage-dependent anion-selective channel (VDAC). J Biol Chem 281:17347–17358

    Article  CAS  PubMed  Google Scholar 

  62. Baumgartner HK, Gerasimenko JV, Thorne C, Ferdek P, Pozzan T, Tepikin AV, Petersen OH, Sutton R, Watson AJ, Gerasimenko OV (2009) Calcium elevation in mitochondria is the main Ca2 + requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem 284:20796–20803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Zalk R, Israelson A, Garty ES, Azoulay-Zohar H, Shoshan-Barmatz V (2005) Oligomeric states of the voltage-dependent anion channel and cytochrome c release from mitochondria. Biochem J 386:73–83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Shoshan-Barmatz V, Keinan N, Abu-Hamad S, Tyomkin D, Aram L (2010) Apoptosis is regulated by the VDAC1 N-terminal region and by VDAC oligomerization: release of cytochrome c, AIF and Smac/Diablo. Biochim Biophys Acta 1797:1281–1291

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81101164, 81171483, 81371709) and the Scientific and Technical Key Task of Heilongjiang Province, China (GC10C306). This work was also supported by the National key clinical specialist construction Programs of China.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Gao, W., Yang, Y. et al. Inhibition of VDAC1 prevents Ca2+-mediated oxidative stress and apoptosis induced by 5-aminolevulinic acid mediated sonodynamic therapy in THP-1 macrophages. Apoptosis 19, 1712–1726 (2014). https://doi.org/10.1007/s10495-014-1045-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1045-5

Keywords

Navigation