Skip to main content
Log in

LR-90 prevents methylglyoxal-induced oxidative stress and apoptosis in human endothelial cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Methylglyoxal (MGO) is a highly reactive dicarbonyl compound known to induce cellular injury and cytoxicity, including apoptosis in vascular cells. Vascular endothelial cell apoptosis has been implicated in the pathophysiology and progression of atherosclerosis. We investigated whether the advanced glycation end-product inhibitor LR-90 could prevent MGO-induced apoptosis in human umbilical vascular endothelial cells (HUVECs). HUVECs were pre-treated with LR-90 and then stimulated with MGO. Cell morphology, cytotoxicity and apoptosis were evaluated by light microscopy, MTT assay, and Annexin V-FITC and propidium iodide double staining, respectively. Levels of Bax, Bcl-2, cytochrome c, mitogen-activated protein kinases (MAPKs) and caspase activities were assessed by Western blotting. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. LR-90 dose-dependently prevented MGO-associated HUVEC cytotoxicity and apoptotic biochemical changes such as loss of MMP, increased Bax/Bcl-2 protein ratio, mitochondrial cytochrome c release and activation of caspase-3 and 9. Additionally, LR-90 blocked intracellular ROS formation and MAPK (p44/p42, p38, JNK) activation, though the latter seem to be not directly involved in MGO-induced HUVEC apoptosis. LR-90 prevents MGO-induced HUVEC apoptosis by inhibiting ROS and associated mitochondrial-dependent apoptotic signaling cascades, suggesting that LR-90 possess cytoprotective ability which could be beneficial in prevention of diabetic related-atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AG:

Aminoguanidine

AGE:

Advanced glycation end-product

ECs:

Endothelial cells

HUVECs:

Human umbilical vascular endothelial cells

LR-90:

Methylene bis [4,4′-(2 chlorophenylureido phenoxyisobutyric acid)]

MAPKs:

Mitogen-activated protein kinases

MGO:

Methylglyoxal

MMP:

Mitochondrial membrane potential

NAC:

N-acetyl cysteine

ROS:

Reactive oxygen species

References

  1. Phillips SA, Thornalley PJ (1993) The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. Eur J Biochem 212:101–105

    Article  PubMed  CAS  Google Scholar 

  2. Thornalley PJ (1996) Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification–a role in pathogenesis and anti-proliferative chemotherapy. Gen Pharmacol 27:565–573

    Article  PubMed  CAS  Google Scholar 

  3. Kalapos MP (1999) Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications. Toxicol Lett 110:145–175

    Article  PubMed  CAS  Google Scholar 

  4. Nemet I, Varga-Defterdarovic L, Turk Z (2006) Methylglyoxal in food and living organisms. Mol Nutr Food Res 50:1105–1117

    Article  PubMed  CAS  Google Scholar 

  5. Lapolla A, Flamini R, Dalla Vedova A, Senesi A, Reitano R, Fedele D, Basso E, Seraglia R, Traldi P (2003) Glyoxal and methylglyoxal levels in diabetic patients: quantitative determination by a new GC/MS method. Clin Chem Lab Med 41:1166–1173

    Article  PubMed  CAS  Google Scholar 

  6. Vander Jagt DL (2008) Methylglyoxal, diabetes mellitus and diabetic complications. Drug Metab Drug Interact 23:93–124

    CAS  Google Scholar 

  7. Fosmark DS, Torjesen PA, Kilhovd BK, Berg TJ, Sandvik L, Hanssen KF, Agardh CD, Agardh E (2006) Increased serum levels of the specific advanced glycation end product methylglyoxal-derived hydroimidazolone are associated with retinopathy in patients with type 2 diabetes mellitus. Metabolism 55:232–236

    Article  PubMed  CAS  Google Scholar 

  8. Wang X, Desai K, Chang T, Wu L (2005) Vascular methylglyoxal metabolism and the development of hypertension. J Hypertension 23:1565–1573

    Article  CAS  Google Scholar 

  9. Choy JC, Granville DJ, Hunt DW, McManus BM (2001) Endothelial cell apoptosis: biochemical characteristics and potential implications for atherosclerosis. J Mol Cell Cardiol 33:1673–1690

    Article  PubMed  CAS  Google Scholar 

  10. Alvarez RJ, Gips SJ, Moldovan N, Wilhide CC, Milliken EE, Hoang AT, Hruban RH, Silverman HS, Dang CV, Goldschmidt-Clermont PJ (1997) 17-betaestradiol inhibits apoptosis of endothelial cells. Biochem Biophys Res Commun 237:372–381

    Article  PubMed  CAS  Google Scholar 

  11. Bombeli T, Schwartz BR, Harlan JM (1999) Endothelial cells undergoing apoptosis become proadhesive for non-activated platelets. Blood 93:3831–3838

    PubMed  CAS  Google Scholar 

  12. Durand E, Scoazec A, Lafont A, Boddaert J, Al Hajzen A, Addad F, Mirshahi M, Desnos M, Tedgui A, Mallat Z (2004) In vivo induction of endothelial apoptosis leads to vessel thrombosis and endothelial denudation: a clue to the understanding of the mechanisms of thrombotic plaque erosion. Circulation 109:2503–2506

    Article  PubMed  CAS  Google Scholar 

  13. Scarabelli T, Stephanou A, Rayment N, Pasini E, Comini L, Curello S, Ferrari R, Knight R, Latchman D (2001) Apoptosis of endothelial cells precedes myocyte apoptosis in ischemia/reperfusion injury. Circulation 104:253–256

    Article  PubMed  CAS  Google Scholar 

  14. Qin C, Liu Z (2007) In atherogenesis, the apoptosis of endothelial cell itself could directly induce over-proliferation of smooth muscle cells. Med Hypotheses 68:275–277

    Article  PubMed  CAS  Google Scholar 

  15. Takahashi K, Tatsunami R, Tampo Y (2008) Methylglyoxal-induced apoptosis of endothelial cells. Yakugaku Zasshi 128:1443–1448

    Article  PubMed  CAS  Google Scholar 

  16. Baden T, Yamawaki H, Saito K, Mukohda M, Okada M, Hara Y (2008) Telmisartan inhibits methylglyoxal-mediated cell death in human vascular endothelium. Biochem Biophys Res Commun 373:253–257

    Article  PubMed  CAS  Google Scholar 

  17. Phalitakul S, Okada M, Hara Y, Yamawaki H (2013) Vaspin prevents methylglyoxal-induced apoptosis in human vascular endothelial cells by inhibiting reactive oxygen species generation. Acta Physiol (Oxf) 209:212–219

    CAS  Google Scholar 

  18. Kim K, Son JW, Lee JA, Oh YS, Shinn SH (2004) Methylglyoxal induces apoptosis mediated by reactive oxygen species in bovine retinal pericytes. J Korean Med Sci 19:95–100

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Desai KM, Wu L (2008) Free radical generation by methylglyoxal in tissues. Drug Metab Drug Interact 23:151–173

    Article  CAS  Google Scholar 

  20. Figarola JL, Scott S, Loera S, Tessler C, Chu P, Weiss L, Hardy J, Rahbar S (2003) LR-90 a new advanced glycation endproduct inhibitor prevents progression of diabetic nephropathy in streptozotocin-diabetic rats. Diabetologia 46:1140–1152

    Article  PubMed  CAS  Google Scholar 

  21. Rahbar S, Figarola JL (2003) Novel inhibitors of advanced glycation endproducts. Arch Biochem Biophys 419:63–79

    Article  PubMed  CAS  Google Scholar 

  22. Rahbar S (2007) Novel inhibitors of glycation and AGE formation. Cell Biochem Biophys 48:147–157

    Article  PubMed  CAS  Google Scholar 

  23. Figarola JL, Shanmugam N, Natarajan R, Rahbar S (2007) Anti-inflammatory effects of the advanced glycation end product inhibitor LR-90 in human monocytes. Diabetes 56:647–655

    Article  PubMed  CAS  Google Scholar 

  24. Ly JD, Grubb DR, Lawen (2003) The mitochondrial membrane potential (delta psi(m)) in apoptosis: an update. Apoptosis 8:115–128

    Article  PubMed  CAS  Google Scholar 

  25. Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122:437–441

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Gottlieb E, Armour SM, Harris MH, Thompson CB (2003) Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ 10:709–717

    Article  PubMed  CAS  Google Scholar 

  27. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Bhatwadekar A, Glenn JV, Figarola JL, Scott S, Gardiner TA, Rahbar S, Stitt AW (2008) A new advanced glycation inhibitor, LR-90, prevents experimental diabetic retinopathy in rats. Br J Ophthalmol 92:545–547

    Article  PubMed  CAS  Google Scholar 

  29. Watson A, Thomas MC, Koh P, Figarola JL, Rahbar S, Jandeleit-Dahm K (2010) Attenuation of diabetes-associated atherosclerosis with LR-90, a novel inhibitor of AGE formation. In: Thomas MC, Forbes J (eds) The Maillard Reaction: Interface between Aging. RCS Publishing, Nutrition and Metabolism, pp 137–143

    Google Scholar 

  30. Yamawaki H, Saito K, Okada M, Hara Y (2008) Methylglyoxal mediates vascular inflammation via JNK and p38 in human endothelial cells. Am J Physiol Cell Physiol 295:C1510–C1517

    Article  PubMed  CAS  Google Scholar 

  31. Akhand AA, Hossain K, Mitsui H, Kato M, Miyata T, Inagi R, Du J, Takeda K, Kawamoto Y, Suzuki H, Kurokawa K, Nakashima I (2001) Glyoxal and methylglyoxal trigger distinct signals for map family kinases and caspase activation in human endothelial cells. Free Radic Biol Med 31:20–30

    Article  PubMed  CAS  Google Scholar 

  32. Fukunaga M, Miyata S, Higo S, Hamada Y, Ueyama S, Kasuga M (2005) Methylglyoxal induces apoptosis through oxidative stress-mediated activation of p38 mitogen-activated protein kinase in rat Schwann cells. Ann N Y Acad Sci 1043:151–157

    Article  PubMed  CAS  Google Scholar 

  33. Yim HS, Kang SO, Hah YC, Chock PB, Yim MB (1995) Free radicals generated during the glycation reaction of amino acids by methylglyoxal. J Biol Chem 270:28228–28233

    Article  PubMed  CAS  Google Scholar 

  34. Choudhary D, Chandra D, Kale RK (1997) Influence of methylglyoxal on antioxidant enzymes and oxidative damage. Toxicol Lett 93:141–152

    Article  PubMed  CAS  Google Scholar 

  35. Kang JH (2003) Modification and inactivation of human Cu, Zn-superoxide dismutase by methylglyoxal. Mol Cells 15:194–199

    PubMed  CAS  Google Scholar 

  36. Yan SF, Ramasamy R, Schmidt AM (2010) The RAGE axis: a fundamental mechanism signaling danger to the vulnerable vasculature. Circ Res 106:842–853

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Miyazawa N, Abe M, Souma T, Tanemoto M, Abe T, Nakayama M, Ito S (2010) Methylglyoxal augments intracellular oxidative stress in human aortic endothelial cells. Free Radic Res 44:101–107

    Article  PubMed  CAS  Google Scholar 

  38. Stentz FB, Kitabchi AE, Razavi L, Rahbar S (2009) Inhibition of oxidative stress, TNF-alpha and IL 6 in human aortic endothelial cells by a novel advanced glycation end-product inhibitor, LR-90. Diabetes 58(Suppl. 1):A205

    Google Scholar 

  39. Huang SM, Chuang HC, Wu CH, Yen GC (2008) Cytoprotective effects of phenolic acids on methylglyoxal-induced apoptosis in Neuro-2A cells. Mol Nutr Food Res 52:940–949

    Article  PubMed  CAS  Google Scholar 

  40. Lo TW, Selwood T, Thornalley PJ (1994) The reaction of methylglyoxal with aminoguanidine under physiological conditions and prevention of methylglyoxal binding to plasma proteins. Biochem Pharmacol 48:1865–1870

    Article  PubMed  CAS  Google Scholar 

  41. Ota K, Nakamura J, Li W, Kozakae M, Watarai A, Nakamura N, Yasuda Y, Nakashima E, Naruse K, Watabe K, Kato K, Oiso Y, Hamada Y (2007) Metformin prevents methylglyoxal-induced apoptosis of mouse Schwann cells. Biochem Biophys Res Commun 357:270–375

    Article  PubMed  CAS  Google Scholar 

  42. Huang SM, Hsu CL, Chuang HC, Shih PH, Wu CH, Yen GC (2008) Inhibitory effect of vanillic acid on methylglyoxal-mediated glycation in apoptotic Neuro-2A cells. Neurotoxicology 29:1016–1022

    Article  PubMed  CAS  Google Scholar 

  43. Dhar A, Dhar I, Desai KM, Wu L (2010) Methylglyoxal scavengers attenuate endothelial dysfunction induced by methylglyoxal and high concentrations of glucose. Br J Pharmacol 161:1843–1856

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Sena CM, Matafome P, Crisóstomo J, Rodrigues L, Fernandes R, Pereira P, Seiça RM (2012) Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacol Res 65:497–506

    Article  PubMed  CAS  Google Scholar 

  45. Hanssen NM, Wouters K, Huijberts MS, Gijbels MJ, Sluimer JC, Scheijen JL, Heeneman S, Biessen EA, Daemen MJ, Brownlee M, de Kleijn DP, Stehouwer CD, Pasterkamp G, Schalkwijk CG (2013) Higher levels of advanced glycation endproducts in human carotid atherosclerotic plaques are associated with a rupture-prone phenotype. Eur Heart J 2013 Oct 14. [in-press]

  46. van Eupen MG, Schram MT, Colhoun HM, Hanssen NM, Niessen HW, Tarnow L, Parving HH, Rossing P, Stehouwer CD, Schalkwijk CG (2013) The methylglyoxal-derived AGE tetrahydropyrimidine is increased in plasma of individuals with type 1 diabetes mellitus and in atherosclerotic lesions and is associated with sVCAM-1. Diabetologia 56:1845–1855

    Article  PubMed  CAS  Google Scholar 

  47. Lee SE, Yahg H, Jeong SI, Jin Y, Park C, Park YS (2010) Methylglyoxal-mediated alteration of gene expression in human endothelial cells. BioChip J 5:220–228

    Article  CAS  Google Scholar 

  48. Mirza MA, Kandhro AJ, Memon SQ, Khuhawar MY, Arain R (2007) Determination of glyoxal and methylglyoxal in the serum of diabetic patients by MEKC using stilbenediamine as derivatizing reagent. Electrophoresis 28:3940–3947

    Article  PubMed  CAS  Google Scholar 

  49. Randell EW, Vasdev S, Gill V (2005) Measurement of methylglyoxal in rat tissues by electrospray ionization mass spectrometry and liquid chromatography. J Pharmacol Toxicol Methods 51:153–157

    Article  PubMed  CAS  Google Scholar 

  50. Che W, Asahi M, Takahashi M, Kaneto H, Okado A, Higashiyama S, Taniguchi N (1997) Selective induction of heparin-binding epidermal growth factor-like growth factor by methylglyoxal and 3-deoxyglucosone in rat aortic smooth muscle cells: the involvement of reactive oxygen species formation and a possible implication for atherogenesis in diabetes. J Biol Chem 272:18453–18459

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health Grant (CA 77495). The authors are grateful to Jacquelin and Isaac Moradi for their many years of support and research funding. Funding from Department’s Chair (Prof. Arthur Riggs) and Beckman Research Institute of the City of Hope is also acknowledged. We are also thankful to Dr. Brian Armstrong (Microscope Core, City of Hope) and Lucy Brown (Analytical Core, City of Hope) for their technical assistance in microscopy and flow cytometry analyses, respectively.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharad S. Singhal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figarola, J.L., Singhal, J., Rahbar, S. et al. LR-90 prevents methylglyoxal-induced oxidative stress and apoptosis in human endothelial cells. Apoptosis 19, 776–788 (2014). https://doi.org/10.1007/s10495-014-0974-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-0974-3

Keywords

Navigation